Advanced Search
LI Jiangtao, LU Cuiping, SHA Wen. Quantitative analysis of phosphorus in compound fertilizer by laser induced breakdown spectroscopy[J]. LASER TECHNOLOGY, 2019, 43(5): 601-607. DOI: 10.7510/jgjs.issn.1001-3806.2019.05.003
Citation: LI Jiangtao, LU Cuiping, SHA Wen. Quantitative analysis of phosphorus in compound fertilizer by laser induced breakdown spectroscopy[J]. LASER TECHNOLOGY, 2019, 43(5): 601-607. DOI: 10.7510/jgjs.issn.1001-3806.2019.05.003

Quantitative analysis of phosphorus in compound fertilizer by laser induced breakdown spectroscopy

More Information
  • Received Date: December 27, 2018
  • Revised Date: March 06, 2019
  • Published Date: September 24, 2019
  • In order to detect its components rapidly in the production of compound fertilizer and guide the production, laser-induced breakdown spectroscopy (LIBS) and support vector machine (SVM) were used to quantitatively analyze phosphorus (P) in compound fertilizer. In the experiment, 58 compound fertilizer samples were analyzed by three characteristic spectra of PⅠ 213.5nm, PⅠ 214.9nm and PⅠ 215.4nm. 58 samples were divided into training set (43 samples) and test set (15 samples) by random selection method. The grid search method was used to optimize the parameters of the quantitative analysis model of P element in compound fertilizer. The SVM analysis model was constructed. The results show that, the correlation coefficient R2 of the calibration model of training set is 0.981. It shows that the correlation between the reference value and the predicted value of the training set is high. The correlation coefficient R2 between the reference value and the predicted value of phosphorus (P) in the samples is 0.992. The mean square error is 4.95×10-5. SVM model has strong applicability. The average absolute error and relative error of the training set are 5.9×10-4 and 3.99×10-3, respectively. The average absolute error and relative error of the test set are 5.6×10-4 and 3.28×10-3, respectively. The combination of SVM algorithm and LIBS technology can realize the rapid detection of phosphorus in compound fertilizer. This study provides a reference for rapid determination of element content in compound fertilizer.
  • [1]
    FENG X J, QU T Y. Recent advances in inductively coupled plasma mass spectrometry(ICP-MS)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2011, 34(1):46-52(in Chinese).
    [2]
    YUAN X J, HUANG H Zh, LUO Y, et al. Determination of cadmium in rice by graphite furnace atomic absorption spectrometry with wet digestion method [J]. Guangdong Agricultural Sciences, 2010, 37(2):240-241(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/spaqzljcjs201903037
    [3]
    JI Ch H, LI J Q, HUANG W J, et al. Inductively coupled plasma atomic emission spectrometry (ICP-AES)determination of trace gold in ores[J]. Spectroscopy and Spectral Analysis, 2010, 30(4): 1396-1399(in Chinese).
    [4]
    ZENG Y Z. Piezoelectric electrochemical studies of purine base adsorption andelectrooxidation behavior [D].Changsha: Hunan Normal University, 2012: 26-31(in Chinese).
    [5]
    MA C H, CUI J L.Quantitative analysis of in moltensteel by LIBS composition based on improved partial least squares[J].Laser Technology, 2016, 40(6):876-881(in Chinese).
    [6]
    XIE Sh Sh, WANG Zh Q, HUANG H, et al.Applications of random sample consistency algorithm on laser spectroscopy[J]. Laser Technology, 2017, 41(1): 133-137(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201701027
    [7]
    YU Y, ZHAO N J, WANG Y, et al.Quantitative inversion of laser induced breakdown spectra of Pb in lead-containing sludge[J]. Laser Technology, 2015, 39(4):537-540(in Chinese).
    [8]
    LIAO S Y, WU X L, LI G H, et al.Multi-element nonlinear quantitative analysis of phosphorus in compound fertilizer by laser induced breakdown spectroscopy [J].Spectroscopy and Spectral Analysis, 2018, 38(2): 271-275(in Chinese).
    [9]
    LI J, LU J D, YAO Sh Ch, et al.Laser-induced breakdown spectroscopic properties of compound fertilizers with different physical forms [J]. Spectroscopy and Spectral Analysis, 2012, 32(2):881-885(in Chinese).
    [10]
    LU W Y, LU J D, YAO Sh Ch, et al. Simultaneous measurement of nitrogen-phosphorus-potassium content in compound fertilizer by laser-induced breakdown spectroscopy [J]. Chinese Journal of Lasers, 2017, 38(10):1008003(in Chinese).
    [11]
    NICOLODELLI G, SENESI G S, RANULFI A C, et al Double-pulse laser induced breakdown spectroscopy in orthogonal beam geometry to enhance line emission intensity from agricultural samples[J].Microchemical Journal, 2017, 133(C):272-278. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eb9ad331ae1bd171b037fdacf3fcb7ec
    [12]
    WANG Sh L, WANG Y E, CHEN Q. Quantitative analysis of crude metal elements by laser induced breakdown spectroscopy[J].Laser Technology, 2016, 34(2):57-59(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201501021
    [13]
    CHEN L. PSO-SVM learning algorithm and its application in spatial data analysis [D].Xi'an: Xi'an University Polytechnic, 2012: 57-65(in Chinese).
    [14]
    XU J B. Application and implementation of kernel functions in partition clustering[J].Computer Knowledge and Technology, 2013, 27(9):6185-6188(in Chinese).
    [15]
    WANG Ch L. Water mass metal laser breakdown spectroscopy quantitative analysismethod [D]. Beijing: University of Chinese Academy of Sciences, 2013: 12-17(in Chinese).
    [16]
    LING D X. Rapid detection of heavy metal pollution information in loach basedon laser induced breakdown spectroscopy[D].Wenzhou: Wenzhou University, 2016: 36-44(in Chinese).
    [17]
    CHEN N, YANG Y T, TIAN D, et al. Log-specific laser-induced breakdown spectrograph for the determination of eight elements[J].Chinese Journal of Analytical Chemistry, 2018, 23(2):74-80 (in Chinese).
    [18]
    YU Y, HAO Zh Q, LI Ch M, et al. The application of support vector machine algorithm in laser induced breakdown spectroscopyplastic identification[J]. Acta Physica Sinica, 2016, 62(21):615201(in Chinese).
    [19]
    ZHANG Y, LI Y, GU Y H, et al. Research on SVM quantitative analysis method of Cr and Ni elements in steel alloy based on LIBS technology [J]. Spectroscopy and Spectral Analysis, 2016, 36(3): 2244-2248(in Chinese).
    [20]
    POKRAJAC D, LAZAREVIC A, KECMAN V, et al.Protein detection method based on PCA and SVM[J].Journal of Applied Physics, 2014, 68(9):1067-1075.
    [21]
    CHANG C C, LIN C J.LIBSVM: A library for support vector machines[J].Shanxi Electric Power, 2015, 2(6): 1-27. http://d.old.wanfangdata.com.cn/Periodical/jdq201315008
    [22]
    YU Y, HAO Zh Q, LI C M, et al. Classification of fresh meat species using laser-induced breakdown spectroscopy with support vector machine and principal component analysis[J].Acta Physica Sinica, 2016, 62(21):215201(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx201703007
    [23]
    QU J, CHEN H Y, LIU W Zh, et al. Application of support vector machine based on improved grid search in gas quantitative analysis[J].Chinese Journal of Sensors and Actuators, 2015, 67(4):774-778(in Chinese).
  • Related Articles

    [1]LU Xiwen, WANG Hailin, ZHU Xiao, ZHU Guangzhi. Research of temperature distribution in float glass after heating by 6.45μm laser[J]. LASER TECHNOLOGY, 2019, 43(3): 369-373. DOI: 10.7510/jgjs.issn.1001-3806.2019.03.015
    [2]SONG Xinhua, XIU Tengfei, JIN Xiangzhong, YUAN Jiang, SONG Bin. Numerical simulation of 3-D flow field on laser-assisted heating friction stir welding of steel[J]. LASER TECHNOLOGY, 2016, 40(3): 353-357. DOI: 10.7510/jgjs.issn.1001-3806.2016.03.011
    [3]ZHANG Jun, WEI Xiao-feng, ZHANG Xiong-jun, WU Deng-sheng, TIAN Xiao-lin. Influence factors of temperature and strain distribution in electro-optic crystal for repetition frequency lasers[J]. LASER TECHNOLOGY, 2009, 33(1): 27-31.
    [4]CHEN Gen-yu, ZHANG Jun, ZHANG Yi, ZHAO Zhi. Study on method of measuring temperature distribution of plasma[J]. LASER TECHNOLOGY, 2008, 32(2): 137-139.
    [5]YANG Jian-kun, CAO Ding-xiang, ZHENG Wan-guo, HE Shao-bo, YUAN Xiao-dong, YU Hai-wu, HAN Wei. Analysis of transient temperature and thermal stress distribution for heat capacity disk laser[J]. LASER TECHNOLOGY, 2007, 31(2): 196-199.
    [6]Fang Aiping, Lou Qihong, Dong Jingxing, Wei Yunron, Li Tiejun. Theoretical study on the temperature characteristics of LD side-pumped Nd:YAG laser slab[J]. LASER TECHNOLOGY, 2003, 27(3): 248-250.
    [7]Zhu Tuo, Zhu Xiangdong, Zhang Yixin, Chen Jian, Ni Xiaowu. Solution of diffusion equation in multiple-scattering media with photon densing wave[J]. LASER TECHNOLOGY, 2002, 26(4): 318-320.
    [8]Shen Hongyuan, Zhang Ge, Huang Chenghui, Wei Min, Chen Zhenqiang. Temperature distribution of monocline laser crystal in operation process[J]. LASER TECHNOLOGY, 2002, 26(4): 244-245,249.
    [9]Zhai Qun, Lü Baida, Yang Chenglong. Two dimensional temperature and stress distributions in a diode side pumped slab laser medium[J]. LASER TECHNOLOGY, 1998, 22(4): 231-235.
    [10]Zhao Jianrong, Li Chunjin, Yang Shirun. Measurements of temperature distribution in a counterflow diffusion flame by USED CARS[J]. LASER TECHNOLOGY, 1997, 21(4): 218-222.

Catalog

    Article views (5) PDF downloads (12) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return