Advanced Search
FENG Liqiang, LIU Hang, LIU Hui. Spatial distribution of H2+ radiation harmonics in spatial homogeneous and inhomogeneous fields[J]. LASER TECHNOLOGY, 2017, 41(4): 467-472. DOI: 10.7510/jgjs.issn.1001-3806.2017.04.002
Citation: FENG Liqiang, LIU Hang, LIU Hui. Spatial distribution of H2+ radiation harmonics in spatial homogeneous and inhomogeneous fields[J]. LASER TECHNOLOGY, 2017, 41(4): 467-472. DOI: 10.7510/jgjs.issn.1001-3806.2017.04.002

Spatial distribution of H2+ radiation harmonics in spatial homogeneous and inhomogeneous fields

More Information
  • Received Date: September 09, 2016
  • Revised Date: September 27, 2016
  • Published Date: July 24, 2017
  • In order to understand spatial distribution of H2+ molecular harmonics, the spatial distribution of H2+ molecular harmonic spectra in spatial homogeneous and inhomogeneous fields was studied through solving non-Bohn-Oppenheimer time-dependent Schr dinger equation. The results show that in spatial homogeneous field, harmonic intensity from positive-H nucleus is higher than that from negative-H nucleus. In spatial inhomogeneous field, due to plasma resonance on metallic nanostructure surface, harmonic cutoff is extended, and harmonic intensity from negative-H nucleus is higher than that from positive-H nucleus. Furthermore, spatial distribution of the harmonics can be explained by ionization probability, electron localization in two nuclei, time-dependent wave function and time-frequency analyses of harmonic spectra. Finally, by superposing a selected harmonics properly, an isolated ultrashort 36as pulse can be obtained. The investigation is helpful for understanding spatial distribution of molecular harmonics and producing attosecond pulses.
  • [1]
    WANG C, LIU H L, TIAN J S, et al. Analysis of intrinsic atomic phase in process of extreme ultraviolet attosecond pulse generation[J]. Laser Technology, 2012, 36(3): 342-345 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201203014
    [2]
    WANG C, KANG Y F, TIAN J S, et al. Analysis of phase dependence of the two single-attosecond-pulse generation techniques[J]. Laser Technology, 2012, 36(4): 516-519 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201204021
    [3]
    UIBERACKER M, UPHUES T, SCHULTZE M, et al. Attosecond real-time observation of electron tunnelling in atoms[J]. Nature, 2007, 446(7136): 627-632. DOI: 10.1038/nature05648
    [4]
    GOULIELMAKIS E, SCHULTZE M, HOFSTETTER M, et al. Single-cycle nonlinear optics[J]. Science, 2008, 320(5883): 1614-1617. DOI: 10.1126/science.1157846
    [5]
    LEWENSTEIN M, BALCOU P, IVANOV M Y, et al. Theory of high-harmonic generation by low-frequency laser fields[J]. Physical Review, 1994, A49(3): 2117-2132. DOI: 10.1103-PhysRevA.49.2117/
    [6]
    CORKUM P B. Plasma perspective on strong field multiphoton ionization [J]. Physical Review Letters, 1993, 71(13): 1994-1997. DOI: 10.1103/PhysRevLett.71.1994
    [7]
    SANSONE G, BENEDETTI E, CALEGARI F, et al. Isolated single-cycle attosecond pulses[J]. Science, 2006, 314(5798): 443-446. DOI: 10.1126/science.1132838
    [8]
    CHANG Z H. Chirp of the single attosecond pulse generated by a polarization gating[J]. Physical Review, 2005, A71(2): 023813. DOI: 10.1103-PhysRevA.71.023813/
    [9]
    FENG L Q, CHU T S. Generation of an isolated sub-40as pulse using two-color laser pulses: Combined chirp effects[J]. Physical Review, 2011, A84(5): 053853. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000010000012000183000001&idtype=cvips&gifs=Yes
    [10]
    ZENG Z, CHENG Y, SONG X, et al. Generation of an extreme ultraviolet super continuum in a two-color laser field[J]. Physical Review Letters, 2007, 98(20): 203901. DOI: 10.1103/PhysRevLett.98.203901
    [11]
    LU R F, HE H X, GUO Y H, et al. Theoretical study of single attosecond pulse generation with a three-colour laser field[J]. Journal of Physics, 2009, B42(22): 225601. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e9cd4a26d0a4927aebbe328069ff9425
    [12]
    LI P C, LAUGHLIN C, CHU S I. Generation of isolated sub-20-attosecond pulses from He atoms by two-color midinfrared laser fields[J]. Physical Review, 2014, A89(2): 023431. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9bcca91a843b5bd375c97aab1cae34b3
    [13]
    KIM S, JIN J, KIM Y J, et al. High-harmonic generation by resonant plasmon field enhancement[J]. Nature, 2008, 453(7196): 757-760. DOI: 10.1038/nature07012
    [14]
    SHAARAN T, CIAPPINA M F, LEWENSTEIN M. Quantum-orbit analysis of high-order-harmonic generation by resonant plasmon field enhancement[J]. Physical Review, 2012, A86(2): 023408. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1206.3023
    [15]
    YAVUZ I, CIAPPINA M F, CHACÓN A, et al. Controlling electron localization in H2+ by intense plasmon-enhanced laser fields[J]. Physical Review, 2016, A93(3): 033404. http://arxiv.org/abs/1511.06135
    [16]
    FENG L Q, LIU H. Theoretical investigation of the asymmetric molecular harmonic emission and the attosecond pulse generation[J]. Journal of Molecular Modeling, 2015, 21(3): 1-9. http://www.ncbi.nlm.nih.gov/pubmed/25682123
    [17]
    BIAN X B, BANDRAUK A D. Multichannel molecular high-order harmonic generation from asymmetric diatomic molecules[J]. Physical Review Letters, 2010, 105(9): 093903. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231893796/
    [18]
    ZHANG J, GE X L, WANG T, et al. Spatial distribution on high-order-harmonic generation of an H2+ molecule in intense laser fields[J]. Physical Review, 2015, A92(1): 013418. DOI: 10.1103/PhysRevA.92.013418
    [19]
    ZHANG J, PAN X F, XIA C L, et al. Asymmetric spatial distribution in the high-order harmonic generation of a H2+ molecule controlled by the combination of a mid-infrared laser pulse and a terahertz field[J]. Laser Physical Letters, 2016, 13(7): 075302. DOI: 10.1088/1612-2011/13/7/075302
    [20]
    LU R F, ZHANG P Y, HAN K L. Attosecond-resolution quantum dynamics calculations for atoms and molecules in strong laser fields[J]. Physical Review, 2008, E77(6): 066701. DOI: 10.1103-PhysRevE.77.066701/
    [21]
    XUE S, DU H C, XIA Y, et al. Generation of isolated attosecond pulses in bowtie-shaped nanostructure with three-color spatially inhomogeneous fields[J]. Chinese Physics, 2015, B24(5): 054210. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGWL201505049.htm
    [22]
    BURNETT K, REED V C, COOPER J, et al. Calculation of the background emitted during high-harmonic generation[J]. Physical Review, 1992, A45(5): 3347-3349. DOI: 10.1103-PhysRevA.45.3347/
    [23]
    ANTOINE P, PIRAUX B, MAQUET A. Time profile of harmonics generated by a single atom in a strong electromagnetic field[J]. Physical Review, 1995, A51(3):R1750-R1753. http://www.ncbi.nlm.nih.gov/pubmed/9911899
    [24]
    MAIRESSE Y, BOHAN A D, FRASINSKI L J, et al. Attosecond synchronization of high-harmonic soft X-rays[J]. Science, 2003, 302(5650): 1540-1543. DOI: 10.1126/science.1090277
  • Related Articles

    [1]PAN Fangchao, LIU Jin, YANG Haima, ZHAO Hongzhuang, CHEN Wei, ZHANG Rui, ZHANG Jianwei. Improved Poisson surface reconstruction algorithm based on hybrid tree[J]. LASER TECHNOLOGY, 2023, 47(6): 816-823. DOI: 10.7510/jgjs.issn.1001-3806.2023.06.013
    [2]TIAN Shisi, JIANG Hong, QI Henghui, WANG Yiduan, MAN Ji. X-ray fluorescence spectrum combined with power k-means to examine toner analysis[J]. LASER TECHNOLOGY, 2021, 45(4): 530-534. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.019
    [3]PAN Weijun, WU Zhengyuan, ZHANG Xiaolei. Identification of aircraft wake vortex based on k-nearest neighbor[J]. LASER TECHNOLOGY, 2020, 44(4): 471-477. DOI: 10.7510/jgjs.issn.1001-3806.2020.04.013
    [4]WANG Qi, YANG Guang, ZHANG Jianfeng, XIANG Yingjie, TIAN Zhangnan. Unsupervised band selection algorithm combined with K-L divergence and mutual information[J]. LASER TECHNOLOGY, 2018, 42(3): 417-421. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.024
    [5]ZHANG Changsai, LIU Zhengjun, YANG Shuwen, ZUO Zhiquan. Applicability analysis of cloth simulation filtering algorithm based on LiDAR data[J]. LASER TECHNOLOGY, 2018, 42(3): 410-416. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.023
    [6]WU Chao, YUAN Yongbo, ZHANG Mingyuan. Plane target positioning based on reflection intensity and K-means clustering method[J]. LASER TECHNOLOGY, 2015, 39(3): 341-343. DOI: 10.7510/jgjs.issn.1001-3806.2015.03.013
    [7]WANG Bo, LIU Tie-gen, WANG Meng, ZHAO Ma-li. 基于3维扫描线数据重建的光斑半径补偿研究[J]. LASER TECHNOLOGY, 2012, 36(2): 230-232,237. DOI: 10.3969/j.issn.1001-3806.2012.02.023
    [8]WANG De-wang, WANG Gai-li. 自适应中值滤波在云雷达数据预处理的应用[J]. LASER TECHNOLOGY, 2012, 36(2): 217-220,224. DOI: 10.3969/j.issn.1001-3806.2012.02.019
    [9]YE Ya-yun, YUAN Xiao-dong, XIANG Xia, WANG Hai-jun, YAN Uang-hong, CHEN Meng, HE Shao-bo, . Clearance of SiO2 particles on K9 glass surfaces by means of laser shockwave[J]. LASER TECHNOLOGY, 2011, 35(2): 245-248. DOI: 10.3969/j.issn.1001-3806.2011.02.028
    [10]Wang Qi, Zhao Li, Zhu Ruiyi, Ma Zuguang. Penning ionization of K in high-current-density discharge[J]. LASER TECHNOLOGY, 1995, 19(3): 174-178.
  • Cited by

    Periodical cited type(20)

    1. 刘志鹏,雷东,黄萌,陈豪威,方春华,胡涛,吕俊杰,李放. 激光清除输电线路树障效率影响因素试验研究. 应用激光. 2024(03): 223-229 .
    2. 王帅,赵辉,姚登辉,李忠涛,代爱民. 输电线路激光融冰技术的应用现状及发展分析. 云南电力技术. 2024(02): 61-65 .
    3. 方春华,胡涛,徐鑫,董晓虎,程绳,吴田,孙奥琪,张怡琳. 激光清除树障温度和效率影响因素分析. 应用激光. 2024(05): 106-114 .
    4. 曾绍聪,高仕斌,于龙,王健,丁楚刚,詹睿. 接触网侵限异物检测与挂网异物清除技术综述. 铁道学报. 2024(07): 51-64 .
    5. 关家华,凌忠标,陈君宇,叶蓓,谭家祺. 基于无人机技术的配网线路杆塔鸟巢清除装置研究. 电子制作. 2022(04): 98-100 .
    6. 张志博,王一波,张梓奎,王华伟,张贵新,尤正军. 激光清障技术在电网中的应用现状与发展. 电力工程技术. 2022(02): 45-52+74 .
    7. 徐鑫,方春华,智李,丁璨,董晓虎,程绳,孙维,陶玉宁. 线激光清除架空线路树障时温度和效率分析. 中国电力. 2022(05): 94-101 .
    8. 孙夕彬,李勇,唐伟刚. 主网输变电设备漂浮物故障分析与隐患管控. 湖北电力. 2022(03): 106-112 .
    9. 钱建国,魏立,李游,王伟玺,李晓明. 基于三维点云的输电线路分类去噪算法研究. 应用激光. 2022(11): 104-112 .
    10. 王颂,李锐海,刘旭,景凤仁,刘爱华. 一种异物清除作业机器人机构的优化设计. 广东电力. 2021(01): 121-126 .
    11. 徐鑫,方春华,智李,李景,丁璨,张文婷,董晓虎,程绳. 连续激光作用下瓷质绝缘子温度和热应力分析. 光电子·激光. 2021(01): 78-87 .
    12. 杨波,刘传利,吴英迪,蔡亚芬. 使用智能终端控制激光异物清除设备. 电子技术应用. 2021(03): 51-54+60 .
    13. 王楠,张秉良,张震,漆照,韩梁. 基于工业物联网的激光除异物装置安全管控技术. 山东电力技术. 2021(05): 42-47 .
    14. 吴军,程绳,董晓虎,范杨,林磊,方春华,徐鑫. 线激光清除输电线路树障温度场和应力场分析. 湖北电力. 2021(02): 14-20 .
    15. 徐鑫,方春华,李景,丁璨,袁田,董晓虎,普子恒,吴田,黎鹏. 激光清除输电线路异物时异物烧蚀特性分析. 光电子·激光. 2021(06): 637-644 .
    16. 刘雷,刘霞,单宁. 高压输电线异物激光清除三维仿真研究. 激光与红外. 2021(10): 1286-1293 .
    17. 吴军,程绳,董晓虎,范杨,林磊,方春华,李承熹,徐鑫. 基于改进YOLO算法的激光清异场景目标检测方法. 湖北电力. 2021(04): 59-70 .
    18. 高峰,刘阳,肖茂森,唐露甜. 高压输电线聚合物激光清除系统设计与实验研究. 激光与红外. 2020(11): 1328-1332 .
    19. 方春华,周秋雨,李景,张文婷,彭智,王康,普子恒,方雨. 瓷质绝缘子表面激光辐射温度和应力特性研究. 高压电器. 2019(06): 151-156+163 .
    20. 楼平,岳灵平,李龙. 新型激光除异物技术在特高压输电线路的应用. 浙江电力. 2018(06): 6-9 .

    Other cited types(12)

Catalog

    Article views (4) PDF downloads (8) Cited by(32)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return