Advanced Search
YIN Zhiyong, QIANG Xiwen, WANG Yuefeng, JIANG Yu, XU Yunxiu, ZONG Fei, FENG Shuanglian, HU Yuehong. Research of laser diode beam collimation based on astigmatism surface microlens[J]. LASER TECHNOLOGY, 2015, 39(4): 458-461. DOI: 10.7510/jgjs.issn.1001-3806.2015.04.006
Citation: YIN Zhiyong, QIANG Xiwen, WANG Yuefeng, JIANG Yu, XU Yunxiu, ZONG Fei, FENG Shuanglian, HU Yuehong. Research of laser diode beam collimation based on astigmatism surface microlens[J]. LASER TECHNOLOGY, 2015, 39(4): 458-461. DOI: 10.7510/jgjs.issn.1001-3806.2015.04.006

Research of laser diode beam collimation based on astigmatism surface microlens

More Information
  • Received Date: July 20, 2014
  • Revised Date: November 11, 2014
  • Published Date: July 24, 2015
  • In order to calimate laser beam of laser diodes, the principle of beam collimation was analyzed in the fast and slow axis directions. Based on astigmatic surface microlens, one method was proposed to collimate the laser beam by regarding one laser diode as the collimated unit. The effect of filling factor of laser diode on collimation performance was discussed. As an example of laser diode of 0.5 fill factor, the remaining divergence angle of the fast axis reaches about 0.34 and the remaining divergence angle of the slow axis reaches about 2.69. The results indicate that the microlens can collimate the laser diodes beam with high fill factor and the spot area of the collimated light is very small. The research can provide the new feasible collimation method for high power laser diodes.
  • [1]
    XIE H B,LU E Y,ZHU X Ch,et al. Shaping and collimation of LD beam with astigmatism[J]. Laser Technology, 2013, 37(4): 551-555(in Chinese).
    [2]
    CHEN G, ZHAO Ch M, JI R Y, et al. Simulation design of semiconductor laser collimation based on ZEMAX[J]. Laser Technology, 2012, 36(3): 318-321(in Chinese).
    [3]
    JIA W W,WANG Y F,LEI Ch Q,et al. Effect of assembling error in LD array on homogeneity of hollow ducts[J]. Laser Technology, 2012, 36(1): 93-98(in Chinese).
    [4]
    DING P, CAO Y H, QI J F, et al. Collimation and focus characteristics of slow-axis beams of diode laser array[J]. Journal of Beijing University of Technology, 2010, 36(3):429-432(in Chinese).
    [5]
    DENG Q H,PENG H Sh, SUI Zh, et al. Coupling method for laser-diode-array end-pumped solid-state amplifiers[J].Applied Optics, 2008, 47(31):5908-5915.
    [6]
    LIU Zh H, YANG H, SHI Zh D, et al. Homogenization of the semiconductor laser planar array using diffractive microlen-lens array[J]. Chinese Journal of Lasers, 2014, 41(1): 0102005(in Chinese).
    [7]
    ROLAND D. High-power diode lasers Fundamentals, technology, applications[M]. Berlin, Germany: Springer-Verlag, 2000:121-138.
    [8]
    DANIEL V M, MARIO G M, ANTONIO A, et al. High-efficiency light-emitting diode collimator [J].Optical Engineering, 2010, 49(12): 123001.
    [9]
    WANG G Zh, WANG L L, LI F L, et al. Collimating lens for light-emitting-diode light source based on non-imaging optics[J]. Applied Optics, 2012, 51(11):1654-1659.
    [10]
    XU Q, HAN Y P, CUI Zh W. Characteristic of laser diode beam propagation through a collimating lens[J]. Applied Optics, 2010, 49(3):549-553.
  • Related Articles

    [1]QIAN Shiting, LIAO Qiuyu, GAO Xiang, ZHANG Kefei. Structure of sensitized photonic crystal fiber pressure sensor filled with liquid[J]. LASER TECHNOLOGY, 2021, 45(2): 224-228. DOI: 10.7510/jgjs.issn.1001-3806.2021.02.017
    [2]ZHANG Xuedian, CHEN Nan, NIE Fukun, LU Xinglian, CHANG Min. Dispersion characteristics analysis of photonic crystal fibers based on structure parameters and filling modes[J]. LASER TECHNOLOGY, 2018, 42(1): 48-52. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.010
    [3]ZHANG Debin, SONG Yuhua, WANG Quansheng, DU Yaqing, ZHANG Xinxing, ZHANG Hao. Error analysis of laser divergence angle measurement[J]. LASER TECHNOLOGY, 2016, 40(6): 926-929. DOI: 10.7510/jgjs.issn.1001-3806.2016.06.031
    [4]ZHEN Hailong. Polarization filters based on high birefringence photonic crystal fiber filled with Au[J]. LASER TECHNOLOGY, 2016, 40(1): 1-4. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.001
    [5]MU Guo-qiang, WANG Li, WANG Xi-qing. Focal switch of cosine-squared Gaussian beams passing through an astigmatic lens[J]. LASER TECHNOLOGY, 2011, 35(4): 562-565. DOI: 10.3969/j.issn.1001-3806.2011.04.030
    [6]WANG Shao-lin, CAO Kai-fa, HU Shun-xing, WEI He-li. Analysis and determination of lidar geometrical factor[J]. LASER TECHNOLOGY, 2008, 32(2): 147-150.
    [7]LUO Shi-rong, LÜ Bai-da. MG2 factor of truncated Laguerre-Gaussian beams[J]. LASER TECHNOLOGY, 2004, 28(2): 199-201.
    [8]KE Cai-jun, YI Xin-jian, LAI Jian-jun. Optical design and experiment of microlens array for CCD image sensors[J]. LASER TECHNOLOGY, 2004, 28(2): 186-189.
    [9]Ji Xiaoling, Lü Baida. Transformation properties of super-Gaussian beams passing through an astigmatic lens[J]. LASER TECHNOLOGY, 2002, 26(1): 9-11,28.
    [10]Niu Yanxiong, Wang Yuefeng, Liu Xin, Zhang Chu, Zhu Shoushen. Laser beam quality factor M2 and its measurement[J]. LASER TECHNOLOGY, 1999, 23(1): 38-41.
  • Cited by

    Periodical cited type(3)

    1. 范洪强,张帅,万洪丹. 基于液芯MTC的低浓度血液葡萄糖光学传感器研究. 激光技术. 2021(04): 448-455 . 本站查看
    2. 侯峰裕,王梓杰,余洋,孙航,杨勇,张小贝. 空心微瓶谐振腔的曲率模型及其传输特性研究. 应用光学. 2020(05): 1122-1128 .
    3. 汪成程,张峰,吴根柱. 渐近式太赫兹多孔光子晶体光纤模式特性研究. 激光技术. 2019(06): 768-772 . 本站查看

    Other cited types(1)

Catalog

    Article views (2) PDF downloads (9) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return