Advanced Search
WANG Fubin, LIU Hefei, WANG Rui, ZENG Kai. Sub-pixel adaptive center extraction of line structured light stripe[J]. LASER TECHNOLOGY, 2021, 45(3): 350-356. DOI: 10.7510/jgjs.issn.1001-3806.2021.03.015
Citation: WANG Fubin, LIU Hefei, WANG Rui, ZENG Kai. Sub-pixel adaptive center extraction of line structured light stripe[J]. LASER TECHNOLOGY, 2021, 45(3): 350-356. DOI: 10.7510/jgjs.issn.1001-3806.2021.03.015

Sub-pixel adaptive center extraction of line structured light stripe

More Information
  • Received Date: May 31, 2020
  • Revised Date: September 03, 2020
  • Published Date: May 24, 2021
  • In order to solve the problem that the traditional stripe center extraction algorithm is sensitive to material and noise, an adaptive structured light stripe center extraction algorithm was used to extract the fringe sub-pixel coordinates. The algorithm first preprocesses the image, extracts the region of interest of the stripe image by using the image mask operation, eliminates noise interference through the adaptive convolution template, and obtains the pixel sets of the stripe area cross-sectional width and center coordinates. Secondly, according to the pixel set of the central coordinates, the initial coordinate value of the stripe center was calculated by the quadratic weighted gray centroid method, which will be used as the seed point for regional growth operation, then combined with principal component analysis to decompose the characteristic matrix, and finally the sub-pixel coordinate point of the center of the linear structured light was obtained. The results show that the center sub-pixel coordinates of the structured light stripe can be effectively and quickly obtained by this algorithm. Compared with the gray-scale barycenter method, the extraction results of the algorithm in this paper are less volatile and have a relatively small standard error. The extraction speed is nearly 4 times higher than that of the Steger method based on Hessian matrix, which meets the real-time requirements of the industrial measurement system. The proposed algorithm in this paper has high extraction accuracy, good robustness, low computational complexity, and high real-time performance, which provides nice accuracy guarantee for the subsequent 3-D vision measurement system.
  • [1]
    HUANG L F, LIU G D, ZHANG Ch, et al. Laser stripe center extraction algorithm based on gray weight model[J]. Laser Technology, 2020, 44(2): 190-195(in Chinese).
    [2]
    HYUN K J, SUNG B I, MIN H C. A digital approach to dynamic jaw tracking using a target tracking system and a structured-light three-dimensional scanner[J]. Journal of Prosthodontic Research, 2019, 63(1): 115-119. DOI: 10.1016/j.jpor.2018.05.001
    [3]
    LIU X L, HE D, CHEN H L, et al. Techniques of structured light measurement network with 3-D sensors[J]. Infrared and Laser Engineering, 2020, 49(3): 0303007(in Chinese). DOI: 10.3788/IRLA202049.0303007
    [4]
    ZHANG H, ZHAO B X, LIU G H, et al. Design of rail surface defect detection system based on binocular structure light[J]. Process Automation Instrumentation, 2018, 39(4): 92-95(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZDYB201804022.htm
    [5]
    ZENG D W, XU G L, CHENG Y H, et al. Subpixel extraction of li-near structured light stripe center based on adaptive template[J]. Optoelectronic Technology, 2018, 38(2): 117-121(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDJS201802009.htm
    [6]
    NAN F, LI D H, GAO Q, et al. Implementation of adaptive light stripe center extraction of improved Steger algorithm[J]. Laser Journal, 2018, 39(1): 85-88(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGZZ201801019.htm
    [7]
    ZENG Ch, WANG Sh J, LU H, et al. Center extraction algorithm of line structured light stripe[J]. Journal of Image and Graphics, 2019, 24(10): 1772-1780(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGTB201910014.htm
    [8]
    LENG H W, XU Ch G, XIAO D G, et al. A Method for measuring complicated deep-hole profile using line-structured-light sensor[J]. Transactions of Beijing Institute of Technology, 2013, 33(2): 139-143(in Chinese). http://www.researchgate.net/publication/288702513_A_method_for_measuring_complicated_deep-hole_profile_using_line-structured-light_sensor
    [9]
    WANG Sh Y, LI D H, GAO Q, et al. Detection of structured light strip center line based on improved skeletal removal algorithm[J]. Laser Journal, 2018, 39(10): 39-43(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGZZ201810008.htm
    [10]
    LI Y, CHENG F, ZHAO Zh L. Machining precision online measurement of large span pin hole using structured light[J]. Journal of Zhejiang University (Engineering Science Edition), 2020, 54(3): 557-565(in Chinese).
    [11]
    LI D, GENG N, KANG J N. Research on laser stripe center extraction algorithm under complex background[J]. Computer Applications and Software, 2013, 30(3): 271-273(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JYRJ201303073.htm
    [12]
    STEGER C. An unbiased detector of curvilinear structures[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(2): 113-125. DOI: 10.1109/34.659930
    [13]
    LIU J, LIU L H. Laser stripe center extraction based on hessian matrix and regional growth[J]. Laser & Optoelectronics Progress, 2019, 56(2): 021203(in Chinese). http://www.researchgate.net/publication/330417126_Laser_Stripe_Center_Extraction_Based_on_Hessian_Matrix_and_Regional_Growth
    [14]
    LI F J, LI X J, LIU Zh. A multi-scale analysis based method for extracting coordinates of laser light stripe centers[J]. Acta Optica Si-nica, 2014, 34(11): 1110002(in Chinese). DOI: 10.3788/AOS201434.1110002
    [15]
    YANG Zh H, YANG L, LI H, et al. Stripe center extrication algorithm for structured-light in complex environment[J]. Computer Technology and Developmentm, 2018, 28(9): 7-10(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-WJFZ201809002.htm
    [16]
    CAI H Y, FENG Zh D, HUANG Zh H. Centerline extraction of structured light stripe based on principal component analysis[J]. Chinese Journal of Lasers, 2015, 42(3): 0308006(in Chinese). DOI: 10.3788/CJL201542.0308006
    [17]
    YIN X Q, TAO W, FENG Y Y, et al. Laser stripe extraction method in industrial environments utilizing self-adaptive convolution technique[J]. Applied Optics, 2017, 56(10): 2653-2660. DOI: 10.1364/AO.56.002653
  • Cited by

    Periodical cited type(10)

    1. 贾娜,余本军,张纯朴,王春昕,刘九庆. 选区激光熔化WC-12Co单道成型工艺参数优化. 激光技术. 2025(01): 113-120 . 本站查看
    2. 卞宏友,王美男,刘伟军,邢飞,王慧儒,徐效文,霍庆生. DZ125合金激光沉积CoCrW涂层的组织与性能. 热加工工艺. 2024(19): 121-127+131 .
    3. 李镭昌,魏昕. 激光熔覆复合涂层WC对裂纹产生机理影响研究. 激光技术. 2023(01): 52-58 . 本站查看
    4. 石圆圆,罗玉凤. 轻轨建筑钢结构的表面防护与性能研究. 电镀与精饰. 2023(03): 60-67 .
    5. 杨文斌,李仕宇,肖乾,陈道云,王溯,张博. 减摩耐磨激光熔覆涂层的研究现状及发展趋势. 润滑与密封. 2023(04): 171-182 .
    6. 蒋瑞鑫,牛宗伟,史程程,任智强,韩国峰,杨保伟,王文宇,杨善林,陈贺连. 镍基高温合金载能束增材修复技术研究现状. 材料导报. 2023(15): 188-199 .
    7. 晁祥瑞,黄勇,陈子鹏,许学虎,李文建,王宁,张志虎. 激光重熔对In718熔覆层组织与性能的影响. 激光技术. 2023(04): 506-512 . 本站查看
    8. 陆靖,孙文磊,陈子豪,邢学峰,杨凯欣,周浩南,刘德明. 热作模具表面激光熔覆H13的数值模拟及实验研究. 激光技术. 2023(04): 558-564 . 本站查看
    9. 胡桂领,师鹏,张磊. 数控机床高速钢刀具激光熔覆Co-WC的组织与切削加工性能. 激光与光电子学进展. 2022(11): 350-357 .
    10. 刘琛,穆星宇,李金华,刘斌. 基于灰色理论激光熔覆对形貌影响与优化. 辽宁工业大学学报(自然科学版). 2022(06): 367-372 .

    Other cited types(5)

Catalog

    Article views (8) PDF downloads (3) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return