Advanced Search
MA Lili, NIU Mingsheng, SU Fufang, SHI Meng, WU Wendi, SONG Lianke. Polarization interference system based on single polarization parallel beam splitter[J]. LASER TECHNOLOGY, 2020, 44(3): 382-392. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.020
Citation: MA Lili, NIU Mingsheng, SU Fufang, SHI Meng, WU Wendi, SONG Lianke. Polarization interference system based on single polarization parallel beam splitter[J]. LASER TECHNOLOGY, 2020, 44(3): 382-392. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.020

Polarization interference system based on single polarization parallel beam splitter

More Information
  • Received Date: April 23, 2019
  • Revised Date: November 21, 2019
  • Published Date: May 24, 2020
  • In order to overcome the detects of Savart polarizer, which is the core device of polarizing interference system, such as complex fabrication process and high difficulty in assembling and adjusting, and to solve problems of interference fringe overlying and modulation decline caused by the assembling and processing errors of Savart polarizer, a method of a polarizing interference system based on a single parallel beam splitter (SPBS) was adopted. The structure and principle of this system were analyzed. Jones matrix and coherence intensity of the light exited from the polarizing interferometer system were derived by matrix transfer function. The interference effect is similar to that of the interferometer system based on Savart polarizer. The relationships between the optical path difference of the system and the incident angle and the incident surface were also analyzed. The correctness of the theoretical analysis was verified by experiments. The results show that because SPBS is simple in structure and not required Multiple unit combinations, there is no assembly error, and the processing error will be greatly reduced.
  • [1]
    YANG J Sh, HAN P G, YAN J F, et al. Analysis of beam-splitting characteristics of Wollaston-type polarizing prisms[J]. Laser Techno-logy, 2018, 42(2):249-253(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201802021
    [2]
    YANG H L, SONG L K, WANG R X, et al. Design of the α-BBO crystal Wollaston prism-based on the imaging spectrometer[J]. Laser Technology, 2014, 38(1):79-82(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201401017
    [3]
    KUDENOV M W, JUNGWIRTH M E L, DERENIAK E L, et al. White light Sagnac interferometer for snapshot linear polarimetric imaging[J]. Optics Express, 2009, 17(25): 22520-22534. DOI: 10.1364/OE.17.022520
    [4]
    YUAN X P, ZHANG D W, WANG Ch, et al. Research progress in human tissue detection technologies based on reflection hyperspectra[J]. Optical Instruments, 2017, 39(1): 73-80(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxyq201701013
    [5]
    MURAKAMI N, BABA N. Common-path lateral-shearing nulling interferometry with a Savart plate for exoplanet detection[J]. Optics Letters, 2010, 35(18):3003-3005. DOI: 10.1364/OL.35.003003
    [6]
    ABDELSALAM I G D. Rough surface characterization suing off-axis digital holographic microscopy compensated with self-hologram rotation[J]. Current Applied Physics, 2018, 18(11): 1261-1267. DOI: 10.1016/j.cap.2018.07.003
    [7]
    CAO Q, ZHANG J, DEHOOG E, et al. Demonstration of snapshot imaging polarimeter using modified Savart polariscopes[J]. Applied Optics, 2016, 55(5): 954-959. DOI: 10.1364/AO.55.000954
    [8]
    LIU X J, LIU L Y, LI X Zh, et al. Comparision on classification results based on date of TG-1and HJ-1CCD[J]. Remote Sensing Infor-mation, 2013, 28(3):74-79(in Chinese). https://www.zhangqiaokeyan.com/academic-journal-cn_remote-sensing-information_thesis/0201254402747.html
    [9]
    ZHANG J, YUAN C A, HUANG G H, et al. Acquisition of a full-resolution image and aliasing reduction for a spatially modulated imaging polarimeter with two snapshots[J]. Applied Optics, 2018, 57(10):2376-2382. DOI: 10.1364/AO.57.002376
    [10]
    WATANABE A, FURUKAWA H. High-resolution and high-throughput multichannel Fourier transform spectrometer with two-dimensional interferogram warping compensation[J]. Optics Communications, 2018, 413:8-13. DOI: 10.1016/j.optcom.2017.12.024
    [11]
    ROLAND A T, JUAN P T, VALERIO P. Technique for generating periodic structrued light beams using birefringent elemnts[J]. Optics Express, 2018, 26(22): 28938-28947. DOI: 10.1364/OE.26.028938
    [12]
    BU M M, NIU M Sh, WANG T, et al. Dual four-channel simultaneous interference imaging spectrometer[J]. Acta Optica Sinica, 2017, 37(8): 811001(in Chinese). DOI: 10.3788/AOS201737.0811001
    [13]
    WANG T, NIU M Sh, BU M M, et al. Polarization-difference imaging system with adjustable optical path and its characteristics[J]. Acta Optica Sinica, 2017, 37(7): 711001(in Chinese). DOI: 10.3788/AOS201737.0711001
    [14]
    MU T, ZHANG C, ZHAO B. Principle and analysis of a polarization imaging spectrometer[J]. Applied Optics, 2009, 48(12):2333-2339. DOI: 10.1364/AO.48.002333
    [15]
    BORE M, WOLF E. Principles of optics[M]. 7th ed. Beijing: Publishing House of Electronics Industry, 2009:23(in Chinese).
    [16]
    YAN J X, WEI G H, HA L Zh, et al. Matrix optics[M]. Beijing: Weapon Industry Press, 1995:144-186(in Chinese).
    [17]
    HOU T, CAO F L, ZHANG R Zh. Effect of polarization error on combining efficiency of coherent polarization beam[J]. Laser Technology, 2018, 42(4):572-576(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201804026
    [18]
    FU Y D, WU F Q, NING G Y. Characteristics of splitting angles of micro-angle beam splitting polarization prisms[J]. Laser Technology, 2017, 41(3): 402-405 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201703019
    [19]
    SUN D, WU F Q, YUE Z Y, et al. Design and performance analysis of double semarmont prism[J]. Opitics & Optoelectronic Technology, 2015, 13(6): 100-104(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201506023
    [20]
    WU F Q, WU W D, SU F F, et al. Study on colour fading and optical properties of iceland crystal[J]. Acta Optica Sinica, 2015, 35(9): 916004(in Chinese). DOI: 10.3788/AOS201535.0916004
    [21]
    MU T, ZHANG C, REN W, et al. Interferometric verification for the polarization imaging spectrometer[J]. Journal of Modern Optics, 2011, 58(2):154-159. DOI: 10.1080/09500340.2010.547621
  • Related Articles

    [1]LIU Rongzhan. Design and experimental research of blue light homogenization system based on microlens array[J]. LASER TECHNOLOGY, 2024, 48(4): 499-504. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.007
    [2]HU Xuanyu, ZHENG Haoxuan, ZHENG Yi, DUAN Changcheng, XIAO Yu, XU Gang, TANG Xiahui. Research on modularization of 500 W blue semiconductor laser based on beam combination[J]. LASER TECHNOLOGY, 2024, 48(4): 470-476. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.003
    [3]GUO Youdong, LING Furi, YAO Jianquan. Super-resolution reconstruction for terahertz images based on gradient transform[J]. LASER TECHNOLOGY, 2020, 44(3): 271-277. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.001
    [4]LI Wenwen, LIU Shupeng, WANG Zhongyang. Fast super-resolution fluorescence microscopy by compressed sensing[J]. LASER TECHNOLOGY, 2020, 44(2): 196-201. DOI: 10.7510/jgjs.issn.1001-3806.2020.02.010
    [5]FANG Yaoxin, GUO Baofeng, MA Chao. Super-resolution reconstruction of remote sensing images based on the improved point spread function[J]. LASER TECHNOLOGY, 2019, 43(5): 713-718. DOI: 10.7510/jgjs.issn.1001-3806.2019.05.024
    [6]ZHAO Jianwei, JIANG Xiaowei, FANG Xiaomin, ZHAO Yanjuan, GE Zhengyang. Study on improving the extraction efficiency of blue light LED by metal gratings[J]. LASER TECHNOLOGY, 2019, 43(1): 58-62. DOI: 10.7510/jgjs.issn.1001-3806.2019.01.012
    [7]HU Jiangtao, HUANG Feng, ZHANG Chu, LIU Bingqi, WANG Yuanbo. Research status of super resolution reconstruction based on compound-eye imaging technology[J]. LASER TECHNOLOGY, 2015, 39(4): 492-496. DOI: 10.7510/jgjs.issn.1001-3806.2015.04.014
    [8]LI Qiang, LIU Zhe, NAN Bingbing, GU Shuyin. Improved image super-resolution reconstruction based neighbor embedding[J]. LASER TECHNOLOGY, 2015, 39(1): 13-18. DOI: 10.7510/jgjs.issn.1001-3806.2015.01.003
    [9]HE Xin, ZHANG Bin, ZHOU Kun. 基于虚拟仪器的激光光斑自动采集与分析系统[J]. LASER TECHNOLOGY, 2012, 36(2): 238-242. DOI: 10.3969/j.issn.1001-3806.2012.02.025
    [10]Wang Pengfei, Zhang Dong, LÜ Baida, Sun Yingchun. Recent advances of diode-pumped thin disc-laser[J]. LASER TECHNOLOGY, 2003, 27(6): 551-553,566.
  • Cited by

    Periodical cited type(1)

    1. 周健文,姚纳,赵汗青,张云凡,焦蛟,孙旭,伍波. 大气湍流下超振荡望远成像的理论研究. 激光技术. 2023(01): 115-120 . 本站查看

    Other cited types(0)

Catalog

    Article views (11) PDF downloads (4) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return