Advanced Search
YUAN Wenfeng. Design of a beam expander with a single aspheric lens[J]. LASER TECHNOLOGY, 2016, 40(4): 560-564. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.022
Citation: YUAN Wenfeng. Design of a beam expander with a single aspheric lens[J]. LASER TECHNOLOGY, 2016, 40(4): 560-564. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.022

Design of a beam expander with a single aspheric lens

More Information
  • Received Date: April 16, 2015
  • Revised Date: August 17, 2015
  • Published Date: July 24, 2016
  • In order to design a beam expander or beam compressor with a single ellipsoidal lens, the comprehensive learning strategy particle swarm algorithm was introduced. The refraction characteristics of an ellipsoidal surface expressed by the vector form of refraction law was theoretically analyzed. Fitness data formula in the comprehensive learning strategy particle swarm optimizer was gotten. A single ellipsoidal beam-expanding lens with length less than 170mm and shrinkage rate of 14.16 was designed. The process of beam-shrinking or beam-expanding was simulated by using the ray tracing method. Simulation results show that a single ellipsoidal lens can play the role in compressing beam or expanding beam, and the comprehensive learning particle swarm algorithm can be applied to the design of beam expanders/compressors. The results is helpful in simplifying beam expanding/compressing systems and designing a single expanding/compressing beam lens to meet different requirements.
  • [1]
    LIU H B,AN Zh Y,GAO Y H, et al. System design of a varifocal beam expander[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2010, 33(4):43-45(in Chinese).
    [2]
    ZHENG X,ZUO Ch Ch,ZHOU X Q. Optical route simulation of two-photon polymerization[J]. Laser Technology, 2015,39(3):325-328(in Chinese).
    [3]
    FAN L N, ZHU A M, LIU L, et al. Optical design of laser beam expanding telescope[J]. Infrared,2007, 28(8):20-22(in Chinese).
    [4]
    HE T, WANG Zh R,YUAN G H. Fan-shaped semiconductor micro-ring lasers based on an elliptical reflector mirrors[J]. Laser Technology, 2014, 38(1):114-118(in Chinese).
    [5]
    ZHAO Y N, WANG X, XIANG Y. Design of catadioptric variable focus beam expanding optical system[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2012, 35(1):46-48(in Chinese).
    [6]
    GUO Y X, LI Y C,LIANG T M, et al. Optical design of the uncoaxial three-mirror system with wide field of view[J]. Acta Optica Sinica, 2010, 30(9):2680-2683(in Chinese).
    [7]
    YU D Y, TAN H Y. Engineering optics[M]. 3rd ed. Beijing:China Machinery Industry Press, 2011:6(in Chinese)
    [8]
    QIAO L, YANG Y N. Experimental research of laser wireless power transmission efficiency[J]. Laser Technology, 2014, 38(5):590-594(in Chinese).
    [9]
    YE J F, GAO Zh Sh, YE H Sh, et al. Near-infrared a focal laser beam expanding system with large zoom ratio[J]. Optics and Precision Engineering, 2013, 21(5):1129-1136(in Chinese).
    [10]
    HUANG Sh, DENG L M, YANG H, et al. Homogenization design of laser diode based on ZEMAX[J]. Laser Technology, 2014, 38(4):522-526(in Chinese).
    [11]
    HUA Q. Aberration correction of a single aspheric lens with particle swarm algorithm[J]. Optics Communications, 2012, 285(13/14):2996-3000.
    [12]
    LIANG J J, QIN A K, SUGANTHAN P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006,10(3):281-295.
    [13]
    MARCUSE D. Light transmission optics[M]. New York,USA:Van Nostrand Reinhold Co., 1982:150-155.
    [14]
    ZHOU B K, GAO Y Zh, CHEN T R, et al. Principles of lasers[M]. 7th ed. Beijing:National Defense Industry Press, 2014:11(in Chinese).
    [15]
    ZHANG F Sh. Numerical computation for propagation of Gaussian beam through aspheric system[J]. Acta Optica Sinica, 2008, 28(1):179-183(in Chinese).
  • Related Articles

    [1]PAN Fangchao, LIU Jin, YANG Haima, ZHAO Hongzhuang, CHEN Wei, ZHANG Rui, ZHANG Jianwei. Improved Poisson surface reconstruction algorithm based on hybrid tree[J]. LASER TECHNOLOGY, 2023, 47(6): 816-823. DOI: 10.7510/jgjs.issn.1001-3806.2023.06.013
    [2]TIAN Shisi, JIANG Hong, QI Henghui, WANG Yiduan, MAN Ji. X-ray fluorescence spectrum combined with power k-means to examine toner analysis[J]. LASER TECHNOLOGY, 2021, 45(4): 530-534. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.019
    [3]PAN Weijun, WU Zhengyuan, ZHANG Xiaolei. Identification of aircraft wake vortex based on k-nearest neighbor[J]. LASER TECHNOLOGY, 2020, 44(4): 471-477. DOI: 10.7510/jgjs.issn.1001-3806.2020.04.013
    [4]WANG Qi, YANG Guang, ZHANG Jianfeng, XIANG Yingjie, TIAN Zhangnan. Unsupervised band selection algorithm combined with K-L divergence and mutual information[J]. LASER TECHNOLOGY, 2018, 42(3): 417-421. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.024
    [5]ZHANG Changsai, LIU Zhengjun, YANG Shuwen, ZUO Zhiquan. Applicability analysis of cloth simulation filtering algorithm based on LiDAR data[J]. LASER TECHNOLOGY, 2018, 42(3): 410-416. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.023
    [6]WU Chao, YUAN Yongbo, ZHANG Mingyuan. Plane target positioning based on reflection intensity and K-means clustering method[J]. LASER TECHNOLOGY, 2015, 39(3): 341-343. DOI: 10.7510/jgjs.issn.1001-3806.2015.03.013
    [7]WANG Bo, LIU Tie-gen, WANG Meng, ZHAO Ma-li. 基于3维扫描线数据重建的光斑半径补偿研究[J]. LASER TECHNOLOGY, 2012, 36(2): 230-232,237. DOI: 10.3969/j.issn.1001-3806.2012.02.023
    [8]WANG De-wang, WANG Gai-li. 自适应中值滤波在云雷达数据预处理的应用[J]. LASER TECHNOLOGY, 2012, 36(2): 217-220,224. DOI: 10.3969/j.issn.1001-3806.2012.02.019
    [9]YE Ya-yun, YUAN Xiao-dong, XIANG Xia, WANG Hai-jun, YAN Uang-hong, CHEN Meng, HE Shao-bo, . Clearance of SiO2 particles on K9 glass surfaces by means of laser shockwave[J]. LASER TECHNOLOGY, 2011, 35(2): 245-248. DOI: 10.3969/j.issn.1001-3806.2011.02.028
    [10]Wang Qi, Zhao Li, Zhu Ruiyi, Ma Zuguang. Penning ionization of K in high-current-density discharge[J]. LASER TECHNOLOGY, 1995, 19(3): 174-178.
  • Cited by

    Periodical cited type(20)

    1. 刘志鹏,雷东,黄萌,陈豪威,方春华,胡涛,吕俊杰,李放. 激光清除输电线路树障效率影响因素试验研究. 应用激光. 2024(03): 223-229 .
    2. 王帅,赵辉,姚登辉,李忠涛,代爱民. 输电线路激光融冰技术的应用现状及发展分析. 云南电力技术. 2024(02): 61-65 .
    3. 方春华,胡涛,徐鑫,董晓虎,程绳,吴田,孙奥琪,张怡琳. 激光清除树障温度和效率影响因素分析. 应用激光. 2024(05): 106-114 .
    4. 曾绍聪,高仕斌,于龙,王健,丁楚刚,詹睿. 接触网侵限异物检测与挂网异物清除技术综述. 铁道学报. 2024(07): 51-64 .
    5. 关家华,凌忠标,陈君宇,叶蓓,谭家祺. 基于无人机技术的配网线路杆塔鸟巢清除装置研究. 电子制作. 2022(04): 98-100 .
    6. 张志博,王一波,张梓奎,王华伟,张贵新,尤正军. 激光清障技术在电网中的应用现状与发展. 电力工程技术. 2022(02): 45-52+74 .
    7. 徐鑫,方春华,智李,丁璨,董晓虎,程绳,孙维,陶玉宁. 线激光清除架空线路树障时温度和效率分析. 中国电力. 2022(05): 94-101 .
    8. 孙夕彬,李勇,唐伟刚. 主网输变电设备漂浮物故障分析与隐患管控. 湖北电力. 2022(03): 106-112 .
    9. 钱建国,魏立,李游,王伟玺,李晓明. 基于三维点云的输电线路分类去噪算法研究. 应用激光. 2022(11): 104-112 .
    10. 王颂,李锐海,刘旭,景凤仁,刘爱华. 一种异物清除作业机器人机构的优化设计. 广东电力. 2021(01): 121-126 .
    11. 徐鑫,方春华,智李,李景,丁璨,张文婷,董晓虎,程绳. 连续激光作用下瓷质绝缘子温度和热应力分析. 光电子·激光. 2021(01): 78-87 .
    12. 杨波,刘传利,吴英迪,蔡亚芬. 使用智能终端控制激光异物清除设备. 电子技术应用. 2021(03): 51-54+60 .
    13. 王楠,张秉良,张震,漆照,韩梁. 基于工业物联网的激光除异物装置安全管控技术. 山东电力技术. 2021(05): 42-47 .
    14. 吴军,程绳,董晓虎,范杨,林磊,方春华,徐鑫. 线激光清除输电线路树障温度场和应力场分析. 湖北电力. 2021(02): 14-20 .
    15. 徐鑫,方春华,李景,丁璨,袁田,董晓虎,普子恒,吴田,黎鹏. 激光清除输电线路异物时异物烧蚀特性分析. 光电子·激光. 2021(06): 637-644 .
    16. 刘雷,刘霞,单宁. 高压输电线异物激光清除三维仿真研究. 激光与红外. 2021(10): 1286-1293 .
    17. 吴军,程绳,董晓虎,范杨,林磊,方春华,李承熹,徐鑫. 基于改进YOLO算法的激光清异场景目标检测方法. 湖北电力. 2021(04): 59-70 .
    18. 高峰,刘阳,肖茂森,唐露甜. 高压输电线聚合物激光清除系统设计与实验研究. 激光与红外. 2020(11): 1328-1332 .
    19. 方春华,周秋雨,李景,张文婷,彭智,王康,普子恒,方雨. 瓷质绝缘子表面激光辐射温度和应力特性研究. 高压电器. 2019(06): 151-156+163 .
    20. 楼平,岳灵平,李龙. 新型激光除异物技术在特高压输电线路的应用. 浙江电力. 2018(06): 6-9 .

    Other cited types(12)

Catalog

    Article views (4) PDF downloads (5) Cited by(32)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return