Advanced Search
SUN Lei, GONG Ting, GUO Guqing, TIAN Yali, SUN Xiaocong, ZHOU Yueting, QIU Xuanbing, LI Chuanliang. Development of low cost two-stage high stability temperature control system for semiconductor laser[J]. LASER TECHNOLOGY, 2025, 49(2): 239-244. DOI: 10.7510/jgjs.issn.1001-3806.2025.02.013
Citation: SUN Lei, GONG Ting, GUO Guqing, TIAN Yali, SUN Xiaocong, ZHOU Yueting, QIU Xuanbing, LI Chuanliang. Development of low cost two-stage high stability temperature control system for semiconductor laser[J]. LASER TECHNOLOGY, 2025, 49(2): 239-244. DOI: 10.7510/jgjs.issn.1001-3806.2025.02.013

Development of low cost two-stage high stability temperature control system for semiconductor laser

More Information
  • Received Date: December 24, 2023
  • Revised Date: February 04, 2024
  • In order to solve the problem of semiconductor laser wavelength drift leading to output wavelength deviation, a dual-loop distributed feedback (DFB) laser two-stage temperature control system was proposed. Based on the internal temperature control system of the semiconductor laser, an external environmental temperature loop control system was introduced to ensure that the laser can operate within a stable temperature range. With an embedded processor as the main controller, a digital proportional-integral-derivative control algorithm was adopted. Combined with pulse width modulation and low-cost H-bridge chips to control the heating and cooling of thermoelectric coolers (TEC), precise control of the laser two-stage temperature was achieved. Temperature stability experiments were carried out by changing the control temperature of the laser while keeping the environmental temperature constant and changing the environmental temperature while keeping the laser operating temperature constant. The results indicate that the temperature control precision of this system can reach up to ±0.03 ℃. Wavelength stability experiments were conducted with a near-infrared DFB laser, and the results showe that the maximum wavelength error of the laser in 120 min is 0.0036 nm. Under constant current conditions, the correlation coefficient between laser output wavelength and temperature is higher than 0.9996. The temperature control system has the characteristics of high precision, low cost and compact size, and has certain application prospects in molecular spectroscopy, gas detection, fiber optics communication, and other fields.

  • [1]
    徐一帆, 施阳杰, 邵景珍, 等. 大功率半导体激光器的高精度脉冲电源设计[J]. 激光技术, 2023, 47(1): 108-114.

    XU Y F, SHI Y J, SHAO J Zh, et al. Design of high-precision pulse power supply for high-power semiconductor laser[J]. Laser Technology, 2023, 47(1): 108-114(in Chinese).
    [2]
    邓力华, 阎柏屹, 梁伟, 等. 可连续调谐的窄线宽外腔半导体激光器[J]. 中国激光, 2023, 50(23): 2315001.

    DENG L H, YAN B Y, LIANG W, et al. Continuously tunable narrow linewidth external-cavity semiconductor lasers[J]. Chinese Journal of Lasers, 2023, 50(23): 2315001(in Chinese).
    [3]
    丁向美, 钟乐海, 董静霆, 等. 分布式反馈激光器模拟控温检测系统研制[J]. 强激光与粒子束, 2021, 33(11): 111014.

    DING X M, ZHONG L H, DONG J T, et al. Development of analog temperature control and detection system for distributed feedback laser[J]. High Power Laser and Particle Beams, 2021, 33(11): 111014 (in Chinese).
    [4]
    LI B, XUE L, JI N, et al. Research on spectroscopy modulation of a distributed feedback laser diode based on the TDLAS technique[J]. International Journal of Optics, 2021, 2021: 8829790.
    [5]
    何启欣, 刘慧芳, 李彬, 等. 多通道半导体激光器温控系统[J]. 光学学报, 2017, 37(11): 1114002.

    HE Q X, LIU H F, LI B, et al. Multi-channel semiconductor laser temperature control system[J]. Acta Optica Sinica, 2017, 37(11): 1114002 (in Chinese).
    [6]
    LI N, QIU X B, WEI Y B, et al. A portable low-power integrated current and temperature laser controller for high-sensitivity gas sensor applications[J]. The Review of Scientific Instruments, 2018, 89(10): 103103. DOI: 10.1063/1.5044230
    [7]
    SLENDERS E, PEREGO E, BUTTAFAVA M, et al. Cooled SPAD array detector for low light-dose fluorescence laser scanning microscopy[J]. Biophysical Reports, 2021, 1(2): 100025. DOI: 10.1016/j.bpr.2021.100025
    [8]
    张安迪, 张艳荣, 李涛. 论域可变的模糊PID控制在半导体激光器温度控制系统中的应用[J]. 光学学报, 2021, 41(12): 1214003.

    ZHANG A D, ZHANG Y R, LI T. Application of variable domain fuzzy PID control in semiconductor laser temperature control system[J]. Acta Optica Sinica, 2021, 41(12): 1214003(in Chinese).
    [9]
    穆叶, 胡天立, 陈晨, 等. 采用模拟PID控制的DFB激光器温度控制系统研制[J]. 红外与激光工程, 2019, 48(4): 0405001.

    MU Y, HU T L, CHEN Ch, et al. Development of temperature control system of DFB laser using analog PID control[J]. Infrared and Laser Engineering, 2019, 48(4): 0405001(in Chinese).
    [10]
    LIBBRECHT K G, LIBBRECHT A W. A versatile thermoelectric temperature controller with 10 mK reproducibility and 100 mK absolute accuracy[J]. Review of Scientific Instruments, 2009, 80(12): 126107. DOI: 10.1063/1.3274204
    [11]
    李龙骧, 周根东, 张晓辉, 等. 一种小型化半导体激光器温控电路的设计[J]. 激光杂志, 2023, 44(5): 37-41.

    LI L X, ZHOU G D, ZHANG X H, et al. A design of miniaturized temperature control circuit for laser diodes[J]. Laser Journal, 2023, 44(5): 37-41(in Chinese).
    [12]
    刘洋. 半导体激光器两级耦合式温控方法研究[D]. 北京: 北京理工大学, 2016: 30-35.

    LIU Y. Study on the method of semiconductor laser two-level coupling temperature control[D]. Beijing: Beijing Institute of Technology, 2016: 30-35(in Chinese).
    [13]
    ASMAIR A, HODGKINSON J, CHEHURA E, et al. All-electronic frequency stabilization of a DFB laser diode[J]. Optics Express, 2017, 25(10): 11679-11691. DOI: 10.1364/OE.25.011679
    [14]
    ZEB K, LU Z G, LIU J R, et al. Broadband optical heterodyne millimeter-wave-over-fiber wireless links based on a quantum dash dual-wavelength DFB laser[J]. Journal of Lightwave Technology, 2022, 40(12): 3698-3708. DOI: 10.1109/JLT.2022.3154652
    [15]
    赵成龙, 黄丹飞, 刘智颖, 等. 开放型TDLAS-WMS技术CO2痕量气体检测[J]. 光子学报, 2022, 51(2): 0230001.

    ZHAO Ch L, HUANG D F, LIU Zh Y, et al. Measurement of trace CO2 concentration with open-path TDLAS-WMS technology[J]. Acta Photonica Sinica, 2022, 51(2): 0230001(in Chinese).
    [16]
    田思迪, 王振, 杜艳君, 等. 基于波长调制-直接吸收光谱的CO分子2.3 μm处谱线参数高精度测量[J]. 光谱学与光谱分析, 2023, 43(7): 2246-2251.

    TIAN S D, WANG Zh, DU Y J, et al. High precision measurement of spectroscopic parameters of CO at 2.3 μm based on wavelength modulation-direct absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2023, 43(7): 2246-2251(in Chinese).
    [17]
    王硕, 蒋源, 崔帅威, 等. 基于TDLAS的纳米光纤甲烷传感器[J]. 激光与光电子学进展, 2023, 60(6): 0628011.

    WANG Sh, JIANG Y, CUI Sh W, et al. Nanofiber methane sensor based on TDLAS technology[J]. Laser & Optoelectronics Progress, 2023, 60(6): 0628011(in Chinese).
    [18]
    王彪, 张瑞, 尹红贺, 等. 基于Zynq的TDLAS激光器温度控制系统研究[J]. 激光杂志, 2023, 44(10): 6-9.

    WANG B, ZHANG R, YIN H H, et al. Research on temperature control system of TDLAS laser based on Zynq[J]. Laser Journal, 2023, 44(10): 6-9(in Chinese).
    [19]
    夏志昌, 于永爱, 尚建华. 基于STM32的半导体激光器输出功率和工作温度稳定性研究[J]. 光子学报, 2023, 52(8): 0814002.

    XIA Zh Ch, YU Y A, SHANG J H. Output power and temperature stability of semiconductor laser based on STM32[J]. Acta Photonica Sinica, 2023, 52(8): 0814002(in Chinese).
    [20]
    马天兵, 宫晗, 杜菲, 等. 基于线结构光和优化PID的压电柔性机械臂振动控制[J]. 光学精密工程, 2021, 29(11): 2661-2671. DOI: 10.37188/OPE.2021.0207

    MA T B, GONG H, DU F, et al. Piezoelectric flexible manipulator vibration control based on line structured light and optimized PID[J]. Optics and Precision Engineering, 2021, 29(11): 2661-2671(in Chinese). DOI: 10.37188/OPE.2021.0207
  • Related Articles

    [1]GUO Fengling, XU Guangping, HUANG Baoku. Constant temperature control systems for semiconductor lasers based on DRV595[J]. LASER TECHNOLOGY, 2017, 41(5): 734-737. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.023
    [2]FANG Liuhai, WEN Jiguo, JIANG Yuecheng, PAN Dong, SHUAI Xin. Design of a temperature control system for semiconductor laser based on digital filtering[J]. LASER TECHNOLOGY, 2016, 40(5): 701-705. DOI: 10.7510/jgjs.issn.1001-3806.2016.05.017
    [3]WANG Zongqing, DUAN Jun, ZENG Xiaoyan. Research of precise temperature control systems of high-power semiconductor lasers[J]. LASER TECHNOLOGY, 2015, 39(3): 353-356. DOI: 10.7510/jgjs.issn.1001-3806.2015.03.016
    [4]GAO Pingdong, ZHANG Faquan. Design and implementation of high precision temperature control system for semiconductor lasers[J]. LASER TECHNOLOGY, 2014, 38(2): 270-273. DOI: 10.7510/jgjs.issn.1001-3806.2014.02.026
    [5]FENG Ya-qiang, LIANG Li-ping, YUAN Shu-qing. Study on chaos characteristics in mutually coupled semiconductor lasers[J]. LASER TECHNOLOGY, 2011, 35(2): 196-198. DOI: 10.3969/j.issn.1001-3806.2011.02.015
    [6]KANG Jun-jian, ZHANG Shi-ying, SU Mei-kai, WANG Da-cheng. Development for semiconductor laser accelerating lifetime testing system[J]. LASER TECHNOLOGY, 2004, 28(3): 228-230,254.
    [7]Lu Yang, Zhang Jing, Chen Jian-guo, Li Da-yi. Numerical description of mode switching characteristics of bistable external cavity semiconductor lasers[J]. LASER TECHNOLOGY, 2002, 26(3): 180-182.
    [8]Kang Jun, Chen Jianguo, Li Mingzhong, Sui Zhan. To select pump currents for semiconductor lasers according to required optical pulses[J]. LASER TECHNOLOGY, 2001, 25(3): 196-199.
    [9]Cao Sansong. Review of high power semiconductor lasers[J]. LASER TECHNOLOGY, 2000, 24(4): 203-207.
    [10]Zeng Xiaodong, An Yuying, Yu Changqing. Near field measurement of laser diodes[J]. LASER TECHNOLOGY, 1998, 22(2): 127-129.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return