Advanced Search
LI Xiaolin. Research progress on novel distributed Raman amplification technologies[J]. LASER TECHNOLOGY, 2025, 49(2): 195-202. DOI: 10.7510/jgjs.issn.1001-3806.2025.02.006
Citation: LI Xiaolin. Research progress on novel distributed Raman amplification technologies[J]. LASER TECHNOLOGY, 2025, 49(2): 195-202. DOI: 10.7510/jgjs.issn.1001-3806.2025.02.006

Research progress on novel distributed Raman amplification technologies

More Information
  • Received Date: February 21, 2024
  • Revised Date: April 20, 2024
  • Raman amplification can realize the distributed amplification of optical signals in optical fiber links, and has excellent amplification performance in terms of high gain and low noise, which is one of the key technologies in long-distance optical fiber communication systems. In recent years, in order to further extend the optical signal transmission distance based on Raman amplification, to reduce the relative intensity noise transfer via Raman amplification, to optimize and predict the performance parameters of Raman amplification system such as gain value, gain bandwidth and flatness, etc., a variety of novel fiber distributed Raman amplification technologies have been developed and applied. The research progress on the novel fiber distributed Raman amplification technology in recent years are reviewed, including high order distributed Raman amplification technology based on ultra-long distance fiber laser, low noise Raman amplification technology based on broadband incoherent pump source and intelligent distributed Raman amplification technology based on machine learning, which can sort out the development trends and improvement directions of fiber optic distributed Raman amplification technology.

  • [1]
    郝蕴琦, 贾若一, 丁贝贝, 等. 掺铒光纤自发辐射宽带光源的带宽优化研究[J]. 激光技术, 2023, 47(4): 500-505. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.009

    HAO Y Q, JIA R Y, DING B B, et al. Bandwidth optimization research of wide-band optical source with the Er3+-doped fiber amplified spontaneous emission[J]. Laser Technology, 2023, 47(4): 500-505(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2023.04.009
    [2]
    SOBHANAN A, ANTHUR A, O'DUILL S, et al. Semiconductor optical amplifiers: Recent advances and applications[J]. Advances in Optics and Photonics, 2022, 14(3): 571-651. DOI: 10.1364/AOP.451872
    [3]
    ISLAM M N. Raman amplifiers for telecommunications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(3): 548-559. DOI: 10.1109/JSTQE.2002.1016358
    [4]
    苏渤力. 基于混合抽运喇曼放大的准无损传输系统研究[J]. 激光技术, 2017, 41(2): 265-269. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.024

    SU B L. Investigation on quasi-lossless transmission system based on hybrid pumping Raman amplification[J]. Laser Technology, 2017, 41(2): 265-269(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2017.02.024
    [5]
    赵明君, 崔力民, 侯建明, 等. 分布式喇曼光放大系统中噪声的精确分析[J]. 光通信研究, 2018(5): 25-28.

    ZHAO M J, CUI L M, HOU J M, et al. Accurate analysis of scattering noise in distributed fiber raman amplification systems based on a random model[J]. Study on Optical Communications, 2018(5): 25-28(in Chinese).
    [6]
    SIRLETO L, FERRARA M A. Fiber amplifiers and fiber lasers based on stimulated Raman scattering: A review[J]. Micromachines, 2020, 11(3): 247. DOI: 10.3390/mi11030247
    [7]
    巩稼民, 徐雨田, 何佳蔓, 等. 基于粒子群优化算法的级联喇曼光纤放大器[J]. 激光技术, 2020, 44(6): 749-753. DOI: 10.7510/jgjs.issn.1001-3806.2020.06.018

    GONG J M, XU Y T, HE J M, et al. Cascaded Raman fiber amplifier based on particle swarm optimization[J]. Laser Technology, 2020, 44(6): 749-753(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.06.018
    [8]
    LI J, DU J, MA L, et al. Second-order few-mode Raman amplifier for mode-division multiplexed optical communication systems[J]. Optics Express, 2017, 25(2): 810-820. DOI: 10.1364/OE.25.000810
    [9]
    FARALLI S, BOLOGNINI G, SACCHI G, et al. Bidirectional higher order cascaded Raman amplification benefits for 10 Gb/s WDM unrepeated transmission systems[J]. Journal of Lightwave Technology, 2005, 23(8): 2427-2433. DOI: 10.1109/JLT.2005.850807
    [10]
    ANIA-CASTAÑÓN J D, ELLINGHAM T J, IBBOTSON R, et al. Ultralong Raman fiber lasers as virtually lossless optical media[J]. Physical Review Letters, 2006, 96(2): 023902. DOI: 10.1103/PhysRevLett.96.023902
    [11]
    ANIA-CASTAÑÓN J D, TURITSYN S K. Unrepeatered transmission through ultra-long fiber laser cavities[J]. Optics Communications, 2008, 281(23): 5760-5763. DOI: 10.1016/j.optcom.2008.08.021
    [12]
    ANIA-CASTAÑÓN J D. Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings[J]. Optics Express, 2004, 12(19): 4372-4377. DOI: 10.1364/OPEX.12.004372
    [13]
    ANIA-CASTAÑÓN J D, KARALEKAS V, HARPER P, et al. Si-multaneous spatial and spectral transparency in ultralong fiber lasers[J]. Physical Review Letters, 2008, 101(12): 123903. DOI: 10.1103/PhysRevLett.101.123903
    [14]
    JIA X H, RAO Y J, WANG Z N, et al. Detailed theoretical investigation on improved quasi-lossless transmission using third-order Raman amplification based on ultralong fiber lasers[J]. Journal of the Optical Society of America, 2012, B29(4): 847-854.
    [15]
    WU H, HAN B, RAO Y J. 100km quasi-lossless fiber-optic transmission with a novel cascaded random Raman fiber laser[C]//Optical Fiber Communication Conference. London, UK: Optica Publishing Group, 2018: W2A. 8.
    [16]
    EL-TAHER A, KOTLICKI O, HARPER P, et al. Secure key distribution over a 500 km long link using a Raman ultra-long fiber laser[J]. Laser & Photonics Reviews, 2014, 8(3): 436-442.
    [17]
    ALCÓN-CAMAS M, ANIA-CASTAÑÓN J D. RIN transfer in 2nd-order distributed amplification with ultralong fiber lasers[J]. Optics Express, 2010, 18(23): 23569-23575. DOI: 10.1364/OE.18.023569
    [18]
    RIZZELLI G, IQBAL M A, GALLAZZI F, et al. Impact of input FBG reflectivity and forward pump power on RIN transfer in ultralong Raman laser amplifiers[J]. Optics Express, 2016, 24(25): 29170-29175. DOI: 10.1364/OE.24.029170
    [19]
    GALLAZZI F, RIZZELLI G, IQBAL M A, et al. Performance optimization in ultra-long Raman laser amplified 10×30 Gbaud DP-QPSK transmission: Balancing RIN and ASE noise[J]. Optics Express, 2017, 25(18): 21454-21459. DOI: 10.1364/OE.25.021454
    [20]
    CHURKIN D V, SUGAVANAM S, VATNIK I D, et al. Recent advances in fundamentals and applications of random fiber lasers[J]. Advances in Optics and Photonics, 2015, 7(3): 516-569. DOI: 10.1364/AOP.7.000516
    [21]
    JIA X H, RAO Y J, PENG F, et al. Random-lasing-based distributed fiber-optic amplification[J]. Optics Express, 2013, 21(5): 6572-6577. DOI: 10.1364/OE.21.006572
    [22]
    TAN M, ROSA P, LE S T, et al. Transmission performance improvement using random DFB laser based Raman amplification and bidirectional second-order pumping[J]. Optics Express, 2016, 24(3): 2215-2221. DOI: 10.1364/OE.24.002215
    [23]
    ROSA P, TAN M, LE S T, et al. Unrepeatered DP-QPSK transmi-ssion over 352.8 km SMF using random DFB fiber laser amplification[J]. IEEE Photonics Technology Letters, 2015, 27(11): 1189-1192. DOI: 10.1109/LPT.2015.2414712
    [24]
    MARTINS H F, MARTIN-LOPEZ S, CORREDERA P, et al. Distributed vibration sensing over 125 km with enhanced SNR using phi-OTDR over a URFL cavity[J]. Journal of Lightwave Technology, 2015, 33(12): 2628-2632. DOI: 10.1109/JLT.2015.2396359
    [25]
    FU Y, ZHU R, HAN B, et al. 175 km repeaterless BOTDA with hybrid high-order random fiber laser amplification[J]. Journal of Lightwave Technology, 2019, 37(18): 4680-4686. DOI: 10.1109/JLT.2019.2916413
    [26]
    HAN B, WU H. Ultra-long chaotic FBG sensing with high-order random fiber lasing amplification[J]. Optics Letters, 2023, 48(5): 1280-1283. DOI: 10.1364/OL.483973
    [27]
    KEITA K, DELAYE P, FREY R, et al. Relative intensity noise transfer of large-bandwidth pump lasers in Raman fiber amplifiers[J]. Journal of the Optical Society of America, 2006, B23(12): 2479-2485.
    [28]
    MORIMOTO M, OGOSHI H, YOSHIDA J, et al. Co-propagating dual-order distributed Raman amplifier utilizing incoherent pumping[J]. IEEE Photonics Technology Letters, 2017, 29(7): 567-570. DOI: 10.1109/LPT.2017.2655043
    [29]
    IQBAL M A, TAN M, HARPER P. Enhanced transmission performance using backward-propagated broadband ASE pump[J]. IEEE Photonics Technology Letters, 2018, 30(9): 865-868. DOI: 10.1109/LPT.2018.2821191
    [30]
    TAENGNOI N, BOTTRILL K R H, HONG Y, et al. Ultra-long-span U-band transmission enabled by incoherently pumped raman amplification[J]. Journal of Lightwave Technology, 2023, 41(12): 3767-373. DOI: 10.1109/JLT.2023.3265172
    [31]
    TAN M, ROSA P, LE S T, et al. RIN mitigation and transmission performance enhancement with forward broadband pump[J]. IEEE Photonics Technology Letters, 2017, 30(3): 254-257.
    [32]
    IQBAL M A, TAN M, HARPER P. On the mitigation of RIN transfer and transmission performance improvement in bidirectional distributed Raman amplifiers[J]. Journal of Lightwave Technology, 2018, 36(13): 2611-2618. DOI: 10.1109/JLT.2018.2819078
    [33]
    DUTTA A, AKASAKA Y, HUI R. System performance analysis of distributed Raman amplification with dual-order forward pumping[J]. Journal of Lightwave Technology, 2024, 42(8): 2799-2808. DOI: 10.1109/JLT.2024.3350980
    [34]
    ZIBAR D, BRUSIN A M R, de MOURA U C, et al. Inverse system design using machine learning: The Raman amplifier case[J]. Journal of Lightwave Technology, 2020, 38(4): 736-753. DOI: 10.1109/JLT.2019.2952179
    [35]
    de MOURA U C, da ROS F, BRUSIN A M R, et al. Experimental characterization of Raman amplifier optimization through inverse system design[J]. Journal of Lightwave Technology, 2021, 39(4): 1162-1170. DOI: 10.1109/JLT.2020.3036603
    [36]
    de MOURA U C, da ROS F, BRUSIN A M R, et al. Experimental demonstration of arbitrary Raman gain-profile designs using machine learning[C]//Optical Fiber Communication Conference. London, UK: Optica Publishing Group, 2020: T4B. 2.
    [37]
    BRUSIN A M R, de MOURA U C, CURRI V, et al. Introducing load aware neural networks for accurate predictions of Raman amplifiers[J]. Journal of Lightwave Technology, 2020, 38(23): 6481-6491. DOI: 10.1109/JLT.2020.3014810
    [38]
    de MOURA U C, BRUSIN A M R, CARENA A, et al. Simultaneous gain profile design and noise figure prediction for Raman amplifiers using machine learning[J]. Optics Letters, 2021, 46(5): 1157-1160. DOI: 10.1364/OL.417243
    [39]
    SOLTANI M, da ROS F, CARENA A, et al. Spectral and spatial power evolution design with machine learning-enabled Raman amplification[J]. Journal of Lightwave Technology, 2022, 40(12): 3546-3556. DOI: 10.1109/JLT.2022.3154471
    [40]
    BORRACCINI G, STRAULLU S, PICIACCIA S, et al. Cognitive Raman amplifier control using an evolutionary optimization strategy[J]. IEEE Photonics Technology Letters, 2022, 34(4): 223-226. DOI: 10.1109/LPT.2022.3148449
    [41]
    CHEN Y, DU J, HUANG Y, et al. Intelligent gain flattening in wavelength and space domain for FMF Raman amplification by machine learning based inverse design[J]. Optics Express, 2020, 28(8): 11911-11920. DOI: 10.1364/OE.387820
    [42]
    MARCON G, GALTAROSSA A, PALMIERI L, et al. Model-aware deep learning method for Raman amplification in few-mode fibers[J]. Journal of Lightwave Technology, 2021, 39(5): 1371-1380. DOI: 10.1109/JLT.2020.3034692
    [43]
    刘紫娟, 李永倩, 张立欣, 等. 基于光纤传感的形状传感发展研究[J]. 激光技术, 2022, 46(6): 760-766. DOI: 10.7510/jgjs.issn.1001-3806.2022.06.008

    LIU Z J, LI Y Q, ZHANG L X, et al. Research on the development of shape sensing based on optical fiber sensing[J]. Laser Technology, 2022, 46(6): 760-766(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.06.008
  • Related Articles

    [1]QIAN Xiujie, CHEN Hanlin, MA Haixia, YANG Yannan, LAN Jianyu. Laser wireless charging protection system based on deep learning[J]. LASER TECHNOLOGY, 2024, 48(5): 765-770. DOI: 10.7510/jgjs.issn.1001-3806.2024.05.023
    [2]HE Fengtao, WU Qianqian, YANG Yi, ZHANG Jianlei, WANG Binghui, ZHANG Yi. Research on laser speckle image recognition technology based on transfer learning[J]. LASER TECHNOLOGY, 2024, 48(3): 443-448. DOI: 10.7510/jgjs.issn.1001-3806.2024.03.022
    [3]LI Xia, YANG Zhengwei, HUANG Junwei, YANG Yafu, GAO Sha. Study on image point cloud classification of mountain villages by machine learning[J]. LASER TECHNOLOGY, 2024, 48(2): 288-294. DOI: 10.7510/jgjs.issn.1001-3806.2024.02.022
    [4]PEI Ruijing, WANG Shuo, WANG Huaying. Superresolution reconstruction of holograms based on deep learning[J]. LASER TECHNOLOGY, 2023, 47(4): 485-491. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.007
    [5]ZHANG Yuzhou, JIN Xiaofeng, JIN Xiangdong, YU Xianbin, ZHENG Shilie, CHI Hao, ZHANG Xianmin. Radio-over-fiber transmission based on ultra-long distributed 2-order Raman amplifier[J]. LASER TECHNOLOGY, 2018, 42(3): 300-305. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.003
    [6]XIANG Yingjie, YANG Guang, ZHANG Jianfeng, WANG Qi. Dimensionality reduction for hyperspectral imagery manifold learning based on spectral gradient angles[J]. LASER TECHNOLOGY, 2017, 41(6): 921-926. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.030
    [7]SU Boli. Investigation on quasi-lossless transmission system based on hybrid pumping Raman amplification[J]. LASER TECHNOLOGY, 2017, 41(2): 265-269. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.024
    [8]ZHOU Wei-jun, LI Ze-ren, WANG Rong-bo. Numerical simulation and analysis of C+L bandwidth fiber Raman amplifier using multi-wavelength pumps[J]. LASER TECHNOLOGY, 2011, 35(6): 778-780,853. DOI: 10.3969/j.issn.1001-3806.2011.06.015
    [9]ZHOU Wei-jun, WANG Rong-bo, LI Ze-ren. Study of distributed broadband fiber Raman amplifier[J]. LASER TECHNOLOGY, 2009, 33(5): 449-451,458. DOI: 10.3969/j.issn.1001-3806.2009.05.001
    [10]WU Bin, LI Kang, KONG Fan-min, WANG Yan, LI Qian. A study of the simulation algorithm for multi-pumped broadband Raman amplifier[J]. LASER TECHNOLOGY, 2005, 29(4): 410-413.

Catalog

    Article views (16) PDF downloads (6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return