Citation: | PEI Ruijing, WANG Shuo, WANG Huaying. Superresolution reconstruction of holograms based on deep learning[J]. LASER TECHNOLOGY, 2023, 47(4): 485-491. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.007 |
[1] |
ZHANG X, CHEN Zh K, GAO J, et al. A two-stage deep transfer learning model and its application for medical image processing in traditional medicine[J]. Knowledge-Based Systems, 2022, 239(5): 108060. https://www.sciencedirect.com/science/article/pii/S0950705121011436
|
[2] |
HOLTKAMP A, ELHENNAWY K, ORO J, et al. Clinical medicine generalizability of deep learning models for caries detection in near-infrared light transillumination images[J]. Journal of Clinical Medicine, 2021, 10(5): 961. DOI: 10.3390/jcm10050961
|
[3] |
张艳月, 张宝华, 赵云飞, 等. 基于双通道深度密集特征融合的遥感影像分类[J]. 激光技术, 2021, 45(1): 73-79. DOI: 10.7510/jgjs.issn.1001-3806.2021.01.013
ZHANG Y Y, ZHANG B H, ZHAO Y F, et al. Remote sensing image classification based on dual-channel deep dense feature fusion[J]. Laser Technology, 2021, 45(1): 73-79(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.01.013
|
[4] |
XUE H L, CHEN X, ZHANG R, et al. Deep learning-based maritime environment segmentation for unmanned surface vehicles using superpixel algorithms[J]. Journal of Marine Science and Engineering, 2021, 9(12): 1329. DOI: 10.3390/jmse9121329
|
[5] |
MA G, LLANESl A, IMBERNON B, et al. Performance evaluation of edge-computing platforms for the prediction of low temperatures in agriculture using deep learning[J]. The Journal of Supercomputing, 2021, 77(9): 1-23.
|
[6] |
WU Y F, WU J C, HAO R, et al. Research progress of particle field digital holography based on deep learning[J]. Journal of Applied Optics, 2020, 41(4): 662-674. DOI: 10.5768/JAO202041.0409003
|
[7] |
向东, 桂进斌, 刘超, 等. 数字全息波前准确重建的实验研究[J]. 激光技术, 2017, 41(3): 406-410. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.020
XIANG D, GUI J B, LIU Ch, et al. Experiment research of accurate wavefront reconstruction of digital holography[J]. Laser Technology, 2017, 41(3): 406-410(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2017.03.020
|
[8] |
LIU Y P, ZHANG T, SU J, et al. Reconstruction resolution enhancement of epism based holographic stereogram with hogel spatial multiplexing[J]. Chinese Physics, 2022, 31(4): 310-319.
|
[9] |
LI F Q, ZHAO M, TIAN Z M, et al. Compressive ghost imaging through scattering media with deep learning[J]. Optics Express, 2020, 28(12): 17395-17408. DOI: 10.1364/OE.394639
|
[10] |
YIN D, GU Z Z, ZHANG Y R. Digital holographic reconstruction based on deep learning framework with unpaired data[J]. IEEE Photonics Journal, 2020, 12(2): 1-12.
|
[11] |
WU Y C, RIVENSON Y, ZHANG Y B, et al. Extended depth-of-field in holographic imaging using deeplearning-based autofocusing and phase recovery[J]. Optica, 2018, 5(6): 704-710. DOI: 10.1364/OPTICA.5.000704
|
[12] |
REN Zh B, XU Zh M, LAM E Y M. End-to-end deep learning framework for digital holographic reconstruction[J]. Advanced Photonics, 2019, 1(1): 016004.
|
[13] |
WANG H, LYU M, SITU G. eHoloNet: A learning-based end-to-end approach for in-line digital holographic reconstruction[J]. Optics Express, 2018, 26(18): 22603-22614. DOI: 10.1364/OE.26.022603
|
[14] |
WANG K Q, DOU J Z, QIAN K M, et al. Y-Net: A one-to-two deep learning framework for digital holographic reconstruction[J]. Optics Letters, 2019, 44(19): 4765-4768. DOI: 10.1364/OL.44.004765
|
[15] |
李菊, 李军. 基于U-Net网络的单幅全息图重建方法研究[J]. 激光杂志, 2020, 41(1): 96-99. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202001020.htm
LI J, LI J. Research on single hologram reconstruction method based on U-Net network[J]. Laser Journal, 2020, 41(1): 96-99(in Chin-ese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202001020.htm
|
[16] |
肖文, 李解, 潘锋, 等. 基于USENet实现数字全息细胞再现相位像超分辨重构[J]. 光子学报, 2020, 49(6): 173-184. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202006020.htm
XIAO W, LI J, PAN F, et al. Super-resolution in digital holographic phase cell image based on usenet[J]. Acta Photonica Sinica, 2020, 49(6): 173-184(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202006020.htm
|
[17] |
PIRONE D, SIRICO D, MICCIO L, et al. Speeding up reconstruction of 3D tomograms in holographic flow cytometry via deep learning[J]. Lab on a Chip, 2022, 22(4): 793-804. DOI: 10.1039/D1LC01087E
|
[18] |
NAYFE B H, ABDULLAH S N H S, SULAIMAN R, et al. Optimized leakyrelu for handwritten arabic character recognition using convolution neural networks[J]. Multimedia Tools and Applications, 2022, 81(2): 2065-2094. DOI: 10.1007/s11042-021-11593-6
|
[19] |
刘飞飞. 数字全息显微中的高精度位相重建算法及实验研究[D]. 邯郸: 河北工程大学, 2014: 42-124.
LUI F F. Investigation of exact phase reconstruction algorithm and expeiments in digital holographic microscopy[D]. Handan: Hebei University of Engineering, 2014: 42-124(in Chinese).
|
[20] |
宋修法, 于梦杰, 王华英, 等. 物光与参考光强度比对数字全息再现像质的影响[J]. 激光技术, 2014, 38(6): 859-862. DOI: 10.7510/jgjs.issn.1001-3806.2014.06.029
SONG X F, YU M J, WANG H Y, et al. Effect of reference intensity ratio to object on reconstructed image quality in digital holography[J]. Laser Technology, 2014, 38(6): 859-862(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2014.06.029
|
[21] |
HAN K, WANG Y, XU C, et al. Ghostnets on heterogeneous devices via cheap operations[J]. International Journal of Computer Vision, 2022, 130(4): 1050-1069. DOI: 10.1007/s11263-022-01575-y
|
[22] |
LIU H, LI D, JIANG B, et al. Mgbn-yolo: A faster light-weight object detection model for robotic grasping ofbolster spring based on image-based visual servoing[J]. Journal of Intelligent & Robotic Systems, 2022, 104(4): 77.
|
[23] |
WEI B, SHEN X, YUAN Y. Remote sensing scene classification based on improved ghostnet[J]. Journal of Physics Conference Series, 2020, 1621(1): 012091. DOI: 10.1088/1742-6596/1621/1/012091
|
[24] |
WEI Y, YUAN Q, SHEN H, et al. Boosting the accuracy of multispectral image pansharpening by learning a deep residual network[J]. Geoscience and Remote Sensing Letters, 2017, 14(10): 1795-1799. https://ieeexplore.ieee.org/abstract/document/8012503
|
[25] |
JIANG Y, CHEN L, ZHANG H, et al. Breast cancer histopathological image classification using convolutional neural networks with small se-resnet module[J]. Plos One, 2019, 14(3): 10214587.
|
[26] |
毛志荣, 都云程, 肖诗斌, 等. 基于ECA-Net与多尺度结合的细粒度图像分类方法[J]. 计算机应用研究, 2021, 38(11): 3484-3488. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202111051.htm
MAO Zh R, DU Y Ch, XIAO Sh B, et al. Fine-grained image classification method based on ECA-net and multi-scale[J]. Application Research of Computers, 2021, 38(11): 3484-3488(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202111051.htm
|
[27] |
XUE H, SUN M H, LIANG Y H. ECANet: Explicit cyclic attention-based network for video saliency prediction[J]. Neurocomputing, 2022, 468(C): 233-244.
|
1. |
石岩,刘佳. 板式换热器激光密封焊接关键技术研究. 机械工程学报. 2022(06): 101-109 .
![]() | |
2. |
陈琪,肖述广,王超,谢志雄,罗平,董仕节,解剑英. 薄壁TA2钛管高频焊接接头的组织和力学性能. 材料热处理学报. 2022(06): 175-182 .
![]() | |
3. |
张强勇,赵先锐,刘桂香,陈勇,朱征宇,倪站站. 304不锈钢激光焊接工艺及数值模拟. 电焊机. 2021(04): 1-8 .
![]() | |
4. |
王维东,毕宗岳,徐学利. 焊后冷却方式对S20433奥氏体不锈钢等离子弧焊接头性能的影响. 机械工程材料. 2020(01): 74-77 .
![]() | |
5. |
李忠,王涛,刘佳,石岩,白陈明,栗红星. 工艺参量对铝合金复合焊接接头耐蚀性的影响. 激光技术. 2019(02): 189-194 .
![]() | |
6. |
董伟伟,林健,许海亮,符寒光,雷永平,王细波. SUS304不锈钢超薄片脉冲激光焊接工艺及接头的显微组织和力学性能. 机械工程材料. 2019(05): 38-42+48 .
![]() | |
7. |
包仁东,苏轩,陶汪. 奥氏体不锈钢激光焊接工艺研究. 应用激光. 2018(01): 26-31 .
![]() | |
8. |
龚五堂,雷黎明. 0.2mm不锈钢外观件激光精密焊接工艺研究. 应用激光. 2018(04): 597-600 .
![]() | |
9. |
周媛,蔡艳,衡昊坤,盛洁. 氮元素对奥氏体不锈钢激光焊缝气孔和性能的影响. 现代制造技术与装备. 2017(03): 87-89 .
![]() | |
10. |
李镇,石岩,刘佳,李言飞,李云峰,倪聪,闻龙. 镀镍层对铝/钢异种金属激光焊接质量的影响. 应用激光. 2016(03): 316-320 .
![]() |