Advanced Search
PEI Ruijing, WANG Shuo, WANG Huaying. Superresolution reconstruction of holograms based on deep learning[J]. LASER TECHNOLOGY, 2023, 47(4): 485-491. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.007
Citation: PEI Ruijing, WANG Shuo, WANG Huaying. Superresolution reconstruction of holograms based on deep learning[J]. LASER TECHNOLOGY, 2023, 47(4): 485-491. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.007

Superresolution reconstruction of holograms based on deep learning

More Information
  • Received Date: April 19, 2022
  • Revised Date: June 19, 2022
  • Published Date: July 24, 2023
  • In order to avoid the problems of complicated steps and noise interference of traditional holographic reconstruction methods, an improved semantic segmentation U-Net network was used for super-resolution reconstruction of holograms. Firstly, a novel end-to-end neural network was introduced to fully acquire more semantic information of images and to enhance the performance of network learning. Secondly, the efficient channel attention (ECA) of deep neural convolutional network was added to improve the ability of focusing on details in the holograms, and to further improve the accuracy of the network. The leaky rectified linear units (LeakyReLU) was used as the activation function to accelerate the network convergence. Using the low resolution holograms of blood cells and chicken blood cells for training, the super-resolution reconstruction intensity and phase map were obtained. The results show that the improved network can quickly reconstruct the phase and intensity images with rich details, clear edge texture and flat background. The structure similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) of the blood cell intensity reconstruction images are 0.9613 and 27.38, respectively. Meanwhile, the holograms of different scales can be reconstructed. This study provides a reference for using deep learning to improve the quality of holograms.
  • [1]
    ZHANG X, CHEN Zh K, GAO J, et al. A two-stage deep transfer learning model and its application for medical image processing in traditional medicine[J]. Knowledge-Based Systems, 2022, 239(5): 108060. https://www.sciencedirect.com/science/article/pii/S0950705121011436
    [2]
    HOLTKAMP A, ELHENNAWY K, ORO J, et al. Clinical medicine generalizability of deep learning models for caries detection in near-infrared light transillumination images[J]. Journal of Clinical Medicine, 2021, 10(5): 961. DOI: 10.3390/jcm10050961
    [3]
    张艳月, 张宝华, 赵云飞, 等. 基于双通道深度密集特征融合的遥感影像分类[J]. 激光技术, 2021, 45(1): 73-79. DOI: 10.7510/jgjs.issn.1001-3806.2021.01.013

    ZHANG Y Y, ZHANG B H, ZHAO Y F, et al. Remote sensing image classification based on dual-channel deep dense feature fusion[J]. Laser Technology, 2021, 45(1): 73-79(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.01.013
    [4]
    XUE H L, CHEN X, ZHANG R, et al. Deep learning-based maritime environment segmentation for unmanned surface vehicles using superpixel algorithms[J]. Journal of Marine Science and Engineering, 2021, 9(12): 1329. DOI: 10.3390/jmse9121329
    [5]
    MA G, LLANESl A, IMBERNON B, et al. Performance evaluation of edge-computing platforms for the prediction of low temperatures in agriculture using deep learning[J]. The Journal of Supercomputing, 2021, 77(9): 1-23.
    [6]
    WU Y F, WU J C, HAO R, et al. Research progress of particle field digital holography based on deep learning[J]. Journal of Applied Optics, 2020, 41(4): 662-674. DOI: 10.5768/JAO202041.0409003
    [7]
    向东, 桂进斌, 刘超, 等. 数字全息波前准确重建的实验研究[J]. 激光技术, 2017, 41(3): 406-410. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.020

    XIANG D, GUI J B, LIU Ch, et al. Experiment research of accurate wavefront reconstruction of digital holography[J]. Laser Technology, 2017, 41(3): 406-410(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2017.03.020
    [8]
    LIU Y P, ZHANG T, SU J, et al. Reconstruction resolution enhancement of epism based holographic stereogram with hogel spatial multiplexing[J]. Chinese Physics, 2022, 31(4): 310-319.
    [9]
    LI F Q, ZHAO M, TIAN Z M, et al. Compressive ghost imaging through scattering media with deep learning[J]. Optics Express, 2020, 28(12): 17395-17408. DOI: 10.1364/OE.394639
    [10]
    YIN D, GU Z Z, ZHANG Y R. Digital holographic reconstruction based on deep learning framework with unpaired data[J]. IEEE Photonics Journal, 2020, 12(2): 1-12.
    [11]
    WU Y C, RIVENSON Y, ZHANG Y B, et al. Extended depth-of-field in holographic imaging using deeplearning-based autofocusing and phase recovery[J]. Optica, 2018, 5(6): 704-710. DOI: 10.1364/OPTICA.5.000704
    [12]
    REN Zh B, XU Zh M, LAM E Y M. End-to-end deep learning framework for digital holographic reconstruction[J]. Advanced Photonics, 2019, 1(1): 016004.
    [13]
    WANG H, LYU M, SITU G. eHoloNet: A learning-based end-to-end approach for in-line digital holographic reconstruction[J]. Optics Express, 2018, 26(18): 22603-22614. DOI: 10.1364/OE.26.022603
    [14]
    WANG K Q, DOU J Z, QIAN K M, et al. Y-Net: A one-to-two deep learning framework for digital holographic reconstruction[J]. Optics Letters, 2019, 44(19): 4765-4768. DOI: 10.1364/OL.44.004765
    [15]
    李菊, 李军. 基于U-Net网络的单幅全息图重建方法研究[J]. 激光杂志, 2020, 41(1): 96-99. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202001020.htm

    LI J, LI J. Research on single hologram reconstruction method based on U-Net network[J]. Laser Journal, 2020, 41(1): 96-99(in Chin-ese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202001020.htm
    [16]
    肖文, 李解, 潘锋, 等. 基于USENet实现数字全息细胞再现相位像超分辨重构[J]. 光子学报, 2020, 49(6): 173-184. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202006020.htm

    XIAO W, LI J, PAN F, et al. Super-resolution in digital holographic phase cell image based on usenet[J]. Acta Photonica Sinica, 2020, 49(6): 173-184(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202006020.htm
    [17]
    PIRONE D, SIRICO D, MICCIO L, et al. Speeding up reconstruction of 3D tomograms in holographic flow cytometry via deep learning[J]. Lab on a Chip, 2022, 22(4): 793-804. DOI: 10.1039/D1LC01087E
    [18]
    NAYFE B H, ABDULLAH S N H S, SULAIMAN R, et al. Optimized leakyrelu for handwritten arabic character recognition using convolution neural networks[J]. Multimedia Tools and Applications, 2022, 81(2): 2065-2094. DOI: 10.1007/s11042-021-11593-6
    [19]
    刘飞飞. 数字全息显微中的高精度位相重建算法及实验研究[D]. 邯郸: 河北工程大学, 2014: 42-124.

    LUI F F. Investigation of exact phase reconstruction algorithm and expeiments in digital holographic microscopy[D]. Handan: Hebei University of Engineering, 2014: 42-124(in Chinese).
    [20]
    宋修法, 于梦杰, 王华英, 等. 物光与参考光强度比对数字全息再现像质的影响[J]. 激光技术, 2014, 38(6): 859-862. DOI: 10.7510/jgjs.issn.1001-3806.2014.06.029

    SONG X F, YU M J, WANG H Y, et al. Effect of reference intensity ratio to object on reconstructed image quality in digital holography[J]. Laser Technology, 2014, 38(6): 859-862(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2014.06.029
    [21]
    HAN K, WANG Y, XU C, et al. Ghostnets on heterogeneous devices via cheap operations[J]. International Journal of Computer Vision, 2022, 130(4): 1050-1069. DOI: 10.1007/s11263-022-01575-y
    [22]
    LIU H, LI D, JIANG B, et al. Mgbn-yolo: A faster light-weight object detection model for robotic grasping ofbolster spring based on image-based visual servoing[J]. Journal of Intelligent & Robotic Systems, 2022, 104(4): 77.
    [23]
    WEI B, SHEN X, YUAN Y. Remote sensing scene classification based on improved ghostnet[J]. Journal of Physics Conference Series, 2020, 1621(1): 012091. DOI: 10.1088/1742-6596/1621/1/012091
    [24]
    WEI Y, YUAN Q, SHEN H, et al. Boosting the accuracy of multispectral image pansharpening by learning a deep residual network[J]. Geoscience and Remote Sensing Letters, 2017, 14(10): 1795-1799. https://ieeexplore.ieee.org/abstract/document/8012503
    [25]
    JIANG Y, CHEN L, ZHANG H, et al. Breast cancer histopathological image classification using convolutional neural networks with small se-resnet module[J]. Plos One, 2019, 14(3): 10214587.
    [26]
    毛志荣, 都云程, 肖诗斌, 等. 基于ECA-Net与多尺度结合的细粒度图像分类方法[J]. 计算机应用研究, 2021, 38(11): 3484-3488. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202111051.htm

    MAO Zh R, DU Y Ch, XIAO Sh B, et al. Fine-grained image classification method based on ECA-net and multi-scale[J]. Application Research of Computers, 2021, 38(11): 3484-3488(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202111051.htm
    [27]
    XUE H, SUN M H, LIANG Y H. ECANet: Explicit cyclic attention-based network for video saliency prediction[J]. Neurocomputing, 2022, 468(C): 233-244.
  • Cited by

    Periodical cited type(10)

    1. 石岩,刘佳. 板式换热器激光密封焊接关键技术研究. 机械工程学报. 2022(06): 101-109 .
    2. 陈琪,肖述广,王超,谢志雄,罗平,董仕节,解剑英. 薄壁TA2钛管高频焊接接头的组织和力学性能. 材料热处理学报. 2022(06): 175-182 .
    3. 张强勇,赵先锐,刘桂香,陈勇,朱征宇,倪站站. 304不锈钢激光焊接工艺及数值模拟. 电焊机. 2021(04): 1-8 .
    4. 王维东,毕宗岳,徐学利. 焊后冷却方式对S20433奥氏体不锈钢等离子弧焊接头性能的影响. 机械工程材料. 2020(01): 74-77 .
    5. 李忠,王涛,刘佳,石岩,白陈明,栗红星. 工艺参量对铝合金复合焊接接头耐蚀性的影响. 激光技术. 2019(02): 189-194 . 本站查看
    6. 董伟伟,林健,许海亮,符寒光,雷永平,王细波. SUS304不锈钢超薄片脉冲激光焊接工艺及接头的显微组织和力学性能. 机械工程材料. 2019(05): 38-42+48 .
    7. 包仁东,苏轩,陶汪. 奥氏体不锈钢激光焊接工艺研究. 应用激光. 2018(01): 26-31 .
    8. 龚五堂,雷黎明. 0.2mm不锈钢外观件激光精密焊接工艺研究. 应用激光. 2018(04): 597-600 .
    9. 周媛,蔡艳,衡昊坤,盛洁. 氮元素对奥氏体不锈钢激光焊缝气孔和性能的影响. 现代制造技术与装备. 2017(03): 87-89 .
    10. 李镇,石岩,刘佳,李言飞,李云峰,倪聪,闻龙. 镀镍层对铝/钢异种金属激光焊接质量的影响. 应用激光. 2016(03): 316-320 .

    Other cited types(6)

Catalog

    Article views (640) PDF downloads (8) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return