Advanced Search
LEI Ziang, YANG Song, SHEN Zhenmin, SUN Qian, ZHANG Jinghao, ZHENG Yongchao. Research on inversion method of diffuse attenuation coefficient of ocean LiDAR[J]. LASER TECHNOLOGY, 2024, 48(3): 425-431. DOI: 10.7510/jgjs.issn.1001-3806.2024.03.019
Citation: LEI Ziang, YANG Song, SHEN Zhenmin, SUN Qian, ZHANG Jinghao, ZHENG Yongchao. Research on inversion method of diffuse attenuation coefficient of ocean LiDAR[J]. LASER TECHNOLOGY, 2024, 48(3): 425-431. DOI: 10.7510/jgjs.issn.1001-3806.2024.03.019

Research on inversion method of diffuse attenuation coefficient of ocean LiDAR

More Information
  • Received Date: April 26, 2023
  • Revised Date: June 05, 2023
  • Published Date: May 24, 2024
  • In order to solve the problem that the inversion of the diffusion attenuation coefficient Kd relies on in-situ measurement data, a fusion algorithm based on Klett and Fernald algorithm was proposed in order to inverse Kd. The fusion algorithm was based on the inversion results of the Klett algorithm and calculated the light detection and ranging (LiDAR) ratio as prior information for the Fernald algorithm. Furthermore, the Fernald method was used to inverse the more accurate diffusion attenuation coefficient Kd. In order to solve the problem of insufficient measured signal data, a mathematical analytic model was used as the simulation data source of the fusion algorithm. Finally, based on the self-developed dual-frequency LiDAR system, the effectiveness of the simulated signal was verified through comparison with trial data. The root mean square error of the Kd value obtained by fusion algorithm inversion was 0.74 m-1, which was better than the traditional Klett method and Fernald method. The experimental results show that the proposed fusion algorithm can achieve the convergence and accuracy requirements for the inversion of the diffuse attenuation coefficient Kd and can quickly calculate the LiDAR ratio without prior information about the in-situ environment. This research is helpful to the bathymetry of shallow water and the measurement of optical parameters of ocean profiles.
  • [1]
    黄田程, 陶邦一, 毛志华, 等. 基于多通道海洋激光雷达的海陆波形分类[J]. 中国激光, 2017, 44(6): 0610002. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201706038.htm

    HUANG T Ch, TAO B Y, MAO Zh H, et al. Classification of sea and land waveform based on multi-channel ocean lidar[J]. Chinese Journal of Lasers, 2017, 44(6): 0610002(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201706038.htm
    [2]
    余雪敏. 用航空遥感器对海岸带海洋水色的分析[J]. 航天返回与遥感, 1994, 15(2): 50-65. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG199402006.htm

    YU X M. Analysis of coastal marine water color with aerial remote sensors[J]. Spacecraft Recovery & Remote Sensing, 1994, 15(2): 50-65(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG199402006.htm
    [3]
    李德仁, 王密. 高分辨率光学卫星测绘技术综述[J]. 航天返回与遥感, 2020, 41(2): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202002002.htm

    LI D R, WANG M. A review of high resolution optical satellite surveying and mapping technology[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(2): 1-11(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202002002.htm
    [4]
    仝迟鸣, 鲍云飞, 黄巧林, 等. 太阳诱导叶绿素荧光卫星遥感技术研究进展[J]. 航天返回与遥感, 2022, 43(2): 45-55.

    TONG Ch M, BAO Y F, HUANG Q L, et al. Research progress of solar induced chlorophyll fluorescence satellite remote sensing techno-logy[J]. Spacecraft Recovery & Remote Sensing, 2022, 43(2): 45-55(in Chinese).
    [5]
    刘志鹏, 刘东, 徐沛拓, 等. 海洋激光雷达反演水体光学参数[J]. 遥感学报, 2019, 23(5): 944-951. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201905014.htm

    LIU Zh P, LIU D, XU P T, et al. Marine LiDAR inverts the optical parameters of water[J]. Journal of Remote Sensing, 2019, 23(5): 944-951(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201905014.htm
    [6]
    周雨迪. 用于水体光学特性探测的海洋激光雷达研究[D]. 杭州: 浙江大学, 2020: 41-58.

    ZHOU Y D. Marine LiDAR research for the detection of optical pro-perties of water[D]. Hangzhou: Zhejiang University, 2020: 41-58 (in Chinese).
    [7]
    刘航. 基于激光雷达回波的海洋光学参数反演研究[D]. 杭州: 浙江大学, 2020: 31-63.

    LIU H. Research on inversion of marine optical parameters based on LiDAR echoes[D]. Hangzhou: Zhejiang University, 2020: 31-63 (in Chinese).
    [8]
    徐沛拓, 陶雨婷, 刘志鹏, 等. 海洋激光雷达实验与仿真结果的对比[J]. 红外与激光工程, 2020, 49(2): 0203007. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202002009.htm

    XU P T, TAO Y T, LIU Zh P, et al. Comparison of oceanic lidar experiments and simulation results[J]. Infrared and Laser Engineering, 2020, 49(2): 0203007(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202002009.htm
    [9]
    FERNALD F G. Analysis of atmospheric LiDAR observations: Some comments[J]. Applied Optics, 1984, 23(5): 652-653. DOI: 10.1364/AO.23.000652
    [10]
    FERNALD F G, HERMAN B M, REAGAN J A. Determine of aerosol height distribution by LiDAR[J]. Journal of Applied Meteorology, 1972, 11(3): 482-489. DOI: 10.1175/1520-0450(1972)011<0482:DOAHDB>2.0.CO;2
    [11]
    KLETT J D. Stable analytical inversion solution for processing LiDAR returns[J]. Applied Optics, 1981, 20(2): 211-220. DOI: 10.1364/AO.20.000211
    [12]
    LIU R, LING Q, ZHANG Q, et al. Detection of chlorophyll a and CDOM absorption coefficient with a dual-wavelength oceanic LiDAR: Wavelength optimization method[J]. Remote Sensing, 2020, 12(18): 3021. DOI: 10.3390/rs12183021
    [13]
    李凯鹏, 贺岩, 侯春鹤, 等. 双波长海洋激光雷达探测近岸到大洋水体的叶绿素剖面[J]. 中国激光, 2021, 48(20): 2010002. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202120018.htm

    LI K P, HE Y, HOU Ch H, et al. Dual-wavelength ocean LiDAR detects chlorophyll profiles from nearshore to oceanic water[J]. Chinese Journal of Lasers, 2021, 48(20): 2010002(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202120018.htm
    [14]
    CHURNSIDE J H. LiDAR detection of plankton in the ocean[C]// IEEE International Geoscience & Remote Sensing Symposium. Barcelona, Spain: IEEE, 2007: 3174-3177.
    [15]
    HALTRIN V I. One-parameter two-term Henyey-Greenstein phase function for light scattering in seawater. Applied Optics, 2002, 41(6): 1022-1028. DOI: 10.1364/AO.41.001022
    [16]
    ABDALLAH H, BAGHDADI N, BAILLY J S, et al. Wa-LiD: A new LiDAR simulator for waters[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4): 744-748. DOI: 10.1109/LGRS.2011.2180506
    [17]
    ZHOU Y, CHEN W, CUI X, et al. Validation of the analytical model of oceanic LiDAR Returns: Comparisons with Monte Carlo simulations and experimental results[J]. Remote Sensing, 2019, 11(16): 1870. DOI: 10.3390/rs11161870
    [18]
    KOPLLEYICH Y I. FEYGLES V I, SURKOV A I. Mathematical modeling of input signals for oceanographic lidar systems[J]. Proceedings of the SPIE, 2003, 5155: 30-39. DOI: 10.1117/12.506980
    [19]
    朱峻可, 李丽娟, 林雪竹. 激光雷达测量系统的测量场规划研究[J]. 激光技术, 2021, 45(1): 99-105. DOI: 10.7510/jgjs.issn.1001-3806.2021.01.017

    ZHU J K, LI L J, LIN X Zh. Research on the measurement field planning of LiDAR measurement system[J]. Laser Technology, 2021, 45(1): 99-105(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.01.017
    [20]
    张熠星. 机载测深激光雷达的海底回波提取技术[D]. 上海: 东华大学, 2018: 32-60.

    ZHANG Y X. Sea bottom echo extraction technology of airborne sounding LiDAR[D]. Shanghai: Donghua University, 2018: 32-60 (in Chinese).
    [21]
    薛文佳. 机载激光雷达回波信号建模及处理技术研究[D]. 天津: 天津大学, 2018: 25-42.

    XUE W J. Research on modeling and processing technology of airborne laser radar echo signal[D]. Tianjin: Tianjin University, 2018: 25-42 (in Chinese).
    [22]
    SULLIVAN J M, TWARDOWSKI M S. Angular shape of the oceanic particulate volume scattering function in the backward direction. Applied Optics, 2009, 48(35): 6811-6819. DOI: 10.1364/AO.48.006811
    [23]
    陈玉宝, 王箫鹏, 步志超, 等. 超大城市试验气溶胶激光雷达标定及结果分析[J]. 激光技术, 2022, 46(4): 435-440. DOI: 10.7510/jgjs.issn.1001-3806.2022.04.001

    CHEN Y B, WANG X P, BU Zh Ch, et al. Calibration and result analysis of aerosol LiDAR in megacity experiment[J]. Laser Technology, 2022, 46(4): 435-440(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.04.001
    [24]
    LEE J H, CHURNSIDE J H, MARCHBANKS R D, et al. Oceanographic lidar profiles compared with estimates from in situ optical measurements. Applied Optics, 2013, 52(4): 786-794. DOI: 10.1364/AO.52.000786
    [25]
    WANG L H. JACQUES S L, ZHENG L Q. MCML—Monte Carlo modeling of light transport in multi-layered tissue[J]. Computer Methods and Programs in Biomedicine, 1995, 47(2): 131-146. DOI: 10.1016/0169-2607(95)01640-F
  • Related Articles

    [1]JIAN Yuan, HUANG Zili, WANG Xun. Infrared small target detection based on randomized tensor algorithm[J]. LASER TECHNOLOGY, 2024, 48(1): 127-134. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.020
    [2]CAI Xuming, LI Xiao, LIU Yuxian, HE Chunhua, LIN Junjie. Laser spot center location algorithm based on gray histogram[J]. LASER TECHNOLOGY, 2023, 47(2): 273-279. DOI: 10.7510/jgjs.issn.1001-3806.2023.02.018
    [3]XIE Shanshan, WANG Zheqiang, HUANG He, CHEN Baobao, WANG Pei, LI Jingsong. Applications of random sample consistency algorithm on laser spectroscopy[J]. LASER TECHNOLOGY, 2017, 41(1): 133-137. DOI: 10.7510/jgjs.issn.1001-3806.2017.01.027
    [4]RONG Wei, WANG Yuzhao. Study on detection algorithms of cloud/aerosol layers based on histogram statistics[J]. LASER TECHNOLOGY, 2015, 39(6): 820-823. DOI: 10.7510/jgjs.issn.1001-3806.2015.06.019
    [5]WANG Yuanqing, HE Ju, MA Yong, YU Yin, ZHANG Nian, LIANG Kun. Effect of random noise on oceanic Brillouin lidar measurement[J]. LASER TECHNOLOGY, 2015, 39(1): 6-12. DOI: 10.7510/jgjs.issn.1001-3806.2015.01.002
    [6]LIN Chao, SHEN Xueju, DU Shuang, GUO Yaoyang, HU Shen. Characteristic analysis of encryption and decryption in random polarization optical encryption algorithm[J]. LASER TECHNOLOGY, 2014, 38(4): 515-521. DOI: 10.7510/jgjs.issn.1001-3806.2014.04.016
    [7]FENG Jun-bo, ZHOU Xin. Random phase encoding achievement of color images under spotlight illumination[J]. LASER TECHNOLOGY, 2008, 32(6): 621-623.
    [8]SHEN Yang, CHEN Wen-jing. Influence of sampling on composite Fourier-transform propfilometry[J]. LASER TECHNOLOGY, 2008, 32(1): 80-83,87.
    [9]Chen Houdao, Zhou Gang, Wang Congjun, Huang Shuhuai. An algorithm for laser stripe matching based on the epipolar constraint[J]. LASER TECHNOLOGY, 2003, 27(6): 584-587.
    [10]Xiao Jun, Zhang Bing, . Study on far-field spots of random phased laser[J]. LASER TECHNOLOGY, 1999, 23(2): 99-104.
  • Cited by

    Periodical cited type(3)

    1. 龚皓, 干彬. 基于大数据分析技术的激光三维图像重构研究. 激光杂志. 2019(06): 83-87 .
    2. 韩媞. 低对比度全景球面图像目标分割方法. 科学技术与工程. 2017(14): 234-238 .
    3. 王淑青, 朱道利, 潘健, 李叶伟, 刘天俊, 李维, 要若天. 一种改进的Otsu红外林火图像提取方法研究. 激光杂志. 2016(10): 99-101 .

    Other cited types(4)

Catalog

    Article views (17) PDF downloads (5) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return