Citation: | LEI Ziang, YANG Song, SHEN Zhenmin, SUN Qian, ZHANG Jinghao, ZHENG Yongchao. Research on inversion method of diffuse attenuation coefficient of ocean LiDAR[J]. LASER TECHNOLOGY, 2024, 48(3): 425-431. DOI: 10.7510/jgjs.issn.1001-3806.2024.03.019 |
[1] |
黄田程, 陶邦一, 毛志华, 等. 基于多通道海洋激光雷达的海陆波形分类[J]. 中国激光, 2017, 44(6): 0610002. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201706038.htm
HUANG T Ch, TAO B Y, MAO Zh H, et al. Classification of sea and land waveform based on multi-channel ocean lidar[J]. Chinese Journal of Lasers, 2017, 44(6): 0610002(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201706038.htm
|
[2] |
余雪敏. 用航空遥感器对海岸带海洋水色的分析[J]. 航天返回与遥感, 1994, 15(2): 50-65. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG199402006.htm
YU X M. Analysis of coastal marine water color with aerial remote sensors[J]. Spacecraft Recovery & Remote Sensing, 1994, 15(2): 50-65(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG199402006.htm
|
[3] |
李德仁, 王密. 高分辨率光学卫星测绘技术综述[J]. 航天返回与遥感, 2020, 41(2): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202002002.htm
LI D R, WANG M. A review of high resolution optical satellite surveying and mapping technology[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(2): 1-11(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202002002.htm
|
[4] |
仝迟鸣, 鲍云飞, 黄巧林, 等. 太阳诱导叶绿素荧光卫星遥感技术研究进展[J]. 航天返回与遥感, 2022, 43(2): 45-55.
TONG Ch M, BAO Y F, HUANG Q L, et al. Research progress of solar induced chlorophyll fluorescence satellite remote sensing techno-logy[J]. Spacecraft Recovery & Remote Sensing, 2022, 43(2): 45-55(in Chinese).
|
[5] |
刘志鹏, 刘东, 徐沛拓, 等. 海洋激光雷达反演水体光学参数[J]. 遥感学报, 2019, 23(5): 944-951. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201905014.htm
LIU Zh P, LIU D, XU P T, et al. Marine LiDAR inverts the optical parameters of water[J]. Journal of Remote Sensing, 2019, 23(5): 944-951(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201905014.htm
|
[6] |
周雨迪. 用于水体光学特性探测的海洋激光雷达研究[D]. 杭州: 浙江大学, 2020: 41-58.
ZHOU Y D. Marine LiDAR research for the detection of optical pro-perties of water[D]. Hangzhou: Zhejiang University, 2020: 41-58 (in Chinese).
|
[7] |
刘航. 基于激光雷达回波的海洋光学参数反演研究[D]. 杭州: 浙江大学, 2020: 31-63.
LIU H. Research on inversion of marine optical parameters based on LiDAR echoes[D]. Hangzhou: Zhejiang University, 2020: 31-63 (in Chinese).
|
[8] |
徐沛拓, 陶雨婷, 刘志鹏, 等. 海洋激光雷达实验与仿真结果的对比[J]. 红外与激光工程, 2020, 49(2): 0203007. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202002009.htm
XU P T, TAO Y T, LIU Zh P, et al. Comparison of oceanic lidar experiments and simulation results[J]. Infrared and Laser Engineering, 2020, 49(2): 0203007(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202002009.htm
|
[9] |
FERNALD F G. Analysis of atmospheric LiDAR observations: Some comments[J]. Applied Optics, 1984, 23(5): 652-653. DOI: 10.1364/AO.23.000652
|
[10] |
FERNALD F G, HERMAN B M, REAGAN J A. Determine of aerosol height distribution by LiDAR[J]. Journal of Applied Meteorology, 1972, 11(3): 482-489. DOI: 10.1175/1520-0450(1972)011<0482:DOAHDB>2.0.CO;2
|
[11] |
KLETT J D. Stable analytical inversion solution for processing LiDAR returns[J]. Applied Optics, 1981, 20(2): 211-220. DOI: 10.1364/AO.20.000211
|
[12] |
LIU R, LING Q, ZHANG Q, et al. Detection of chlorophyll a and CDOM absorption coefficient with a dual-wavelength oceanic LiDAR: Wavelength optimization method[J]. Remote Sensing, 2020, 12(18): 3021. DOI: 10.3390/rs12183021
|
[13] |
李凯鹏, 贺岩, 侯春鹤, 等. 双波长海洋激光雷达探测近岸到大洋水体的叶绿素剖面[J]. 中国激光, 2021, 48(20): 2010002. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202120018.htm
LI K P, HE Y, HOU Ch H, et al. Dual-wavelength ocean LiDAR detects chlorophyll profiles from nearshore to oceanic water[J]. Chinese Journal of Lasers, 2021, 48(20): 2010002(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202120018.htm
|
[14] |
CHURNSIDE J H. LiDAR detection of plankton in the ocean[C]// IEEE International Geoscience & Remote Sensing Symposium. Barcelona, Spain: IEEE, 2007: 3174-3177.
|
[15] |
HALTRIN V I. One-parameter two-term Henyey-Greenstein phase function for light scattering in seawater. Applied Optics, 2002, 41(6): 1022-1028. DOI: 10.1364/AO.41.001022
|
[16] |
ABDALLAH H, BAGHDADI N, BAILLY J S, et al. Wa-LiD: A new LiDAR simulator for waters[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4): 744-748. DOI: 10.1109/LGRS.2011.2180506
|
[17] |
ZHOU Y, CHEN W, CUI X, et al. Validation of the analytical model of oceanic LiDAR Returns: Comparisons with Monte Carlo simulations and experimental results[J]. Remote Sensing, 2019, 11(16): 1870. DOI: 10.3390/rs11161870
|
[18] |
KOPLLEYICH Y I. FEYGLES V I, SURKOV A I. Mathematical modeling of input signals for oceanographic lidar systems[J]. Proceedings of the SPIE, 2003, 5155: 30-39. DOI: 10.1117/12.506980
|
[19] |
朱峻可, 李丽娟, 林雪竹. 激光雷达测量系统的测量场规划研究[J]. 激光技术, 2021, 45(1): 99-105. DOI: 10.7510/jgjs.issn.1001-3806.2021.01.017
ZHU J K, LI L J, LIN X Zh. Research on the measurement field planning of LiDAR measurement system[J]. Laser Technology, 2021, 45(1): 99-105(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.01.017
|
[20] |
张熠星. 机载测深激光雷达的海底回波提取技术[D]. 上海: 东华大学, 2018: 32-60.
ZHANG Y X. Sea bottom echo extraction technology of airborne sounding LiDAR[D]. Shanghai: Donghua University, 2018: 32-60 (in Chinese).
|
[21] |
薛文佳. 机载激光雷达回波信号建模及处理技术研究[D]. 天津: 天津大学, 2018: 25-42.
XUE W J. Research on modeling and processing technology of airborne laser radar echo signal[D]. Tianjin: Tianjin University, 2018: 25-42 (in Chinese).
|
[22] |
SULLIVAN J M, TWARDOWSKI M S. Angular shape of the oceanic particulate volume scattering function in the backward direction. Applied Optics, 2009, 48(35): 6811-6819. DOI: 10.1364/AO.48.006811
|
[23] |
陈玉宝, 王箫鹏, 步志超, 等. 超大城市试验气溶胶激光雷达标定及结果分析[J]. 激光技术, 2022, 46(4): 435-440. DOI: 10.7510/jgjs.issn.1001-3806.2022.04.001
CHEN Y B, WANG X P, BU Zh Ch, et al. Calibration and result analysis of aerosol LiDAR in megacity experiment[J]. Laser Technology, 2022, 46(4): 435-440(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.04.001
|
[24] |
LEE J H, CHURNSIDE J H, MARCHBANKS R D, et al. Oceanographic lidar profiles compared with estimates from in situ optical measurements. Applied Optics, 2013, 52(4): 786-794. DOI: 10.1364/AO.52.000786
|
[25] |
WANG L H. JACQUES S L, ZHENG L Q. MCML—Monte Carlo modeling of light transport in multi-layered tissue[J]. Computer Methods and Programs in Biomedicine, 1995, 47(2): 131-146. DOI: 10.1016/0169-2607(95)01640-F
|
1. |
龚皓, 干彬. 基于大数据分析技术的激光三维图像重构研究. 激光杂志. 2019(06): 83-87 .
![]() | |
2. |
韩媞. 低对比度全景球面图像目标分割方法. 科学技术与工程. 2017(14): 234-238 .
![]() | |
3. |
王淑青, 朱道利, 潘健, 李叶伟, 刘天俊, 李维, 要若天. 一种改进的Otsu红外林火图像提取方法研究. 激光杂志. 2016(10): 99-101 .
![]() |