Advanced Search
JIAN Yuan, HUANG Zili, WANG Xun. Infrared small target detection based on randomized tensor algorithm[J]. LASER TECHNOLOGY, 2024, 48(1): 127-134. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.020
Citation: JIAN Yuan, HUANG Zili, WANG Xun. Infrared small target detection based on randomized tensor algorithm[J]. LASER TECHNOLOGY, 2024, 48(1): 127-134. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.020

Infrared small target detection based on randomized tensor algorithm

More Information
  • Received Date: December 08, 2022
  • Revised Date: January 11, 2023
  • Published Date: January 24, 2024
  • In order to reduce the computational complexity of the infrared small targets detection algorithm based on tensor low-rank sparse decomposition and improve the detection performance of infrared dim targets, an infrared small target detection algorithm based on the randomized tensor algorithm was proposed. The algorithm combines the spatial-temporal tensor of the image with the randomized algorithm. Firstly, the infrared image sequence was constructed into spatial-temporal tensors as the input of the tensor optimization model, and then the randomized tensor algorithm was applied to solve the tensor optimization problem. Finally, the target image was obtained by restoring the calculated sparse tensor to the image. The results demonstrate that compared with the traditional algorithm based on low-rank sparse decomposition, the proposed algorithm is faster and also has good detection performance. This study provides a reference for the algorithm acceleration of infrared small target detection based on tensor low-rank sparse decomposition.
  • [1]
    DESHPANDE S D, ER M H, VENKATESWARLU R, et al. Max-mean and max-median filters for detection of small targets[J]. Proceedings of the SPIE, 1999, 3809: 74-83. DOI: 10.1117/12.364049
    [2]
    BAI X, ZHOU F. Analysis of different modified top-hat transformations based on structuring element construction[J]. Signal Processing, 2010, 90(11): 2999-3003. DOI: 10.1016/j.sigpro.2010.04.021
    [3]
    CHEN C L P, LI H, WEI Y, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(1): 574-581.
    [4]
    朱金辉, 张宝华, 谷宇, 等. 基于双邻域对比度的红外小目标检测算法[J]. 激光技术, 2021, 45(6): 794-798. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.020

    ZHU J H, ZHANG B H, GU Y, et al. Infrared small target detection algorithm based on double neighborhood contrast measure[J]. Laser Technology, 2021, 45(6): 794-798(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.06.020
    [5]
    韩金辉, 魏艳涛, 彭真明, 等. 红外弱小目标检测方法综述[J]. 红外与激光工程, 2022, 51(4): 20210393.

    HAN J H, WEI Y T, PENG Zh M, et al. Infrared dim and small target detection: A review [J]. Infrared and Laser Engineering, 2022, 51(4): 20210393(in Chinese).
    [6]
    CANDÈS E J, LI X, MA Y, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): 1-37.
    [7]
    GAO Ch Q, MENG D, YANG Y, et al. Infrared patch-image model for small target detection in a single image[J]. IEEE Transactions on Image Processing, 2013, 22(12): 4996-5009. DOI: 10.1109/TIP.2013.2281420
    [8]
    WANG X Y, PENG Zh M, KONG D H, et al. Infrared dim target detection based on total variation regularization and principal component pursuit[J]. Image and Vision Computing, 2017, 63: 1-9. DOI: 10.1016/j.imavis.2017.04.002
    [9]
    DAI Y M, WU Y Q, SONG Y, et al. Non-negative infrared patch-image model: Robust target-background separation via partial sum minimization of singular values[J]. Infrared Physics & Technology, 2017, 81: 182-194.
    [10]
    DAI Y M, WU Y Q. Reweighted infrared patch-tensor model with both nonlocal and local priors for single-frame small target detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8): 3752-3767. DOI: 10.1109/JSTARS.2017.2700023
    [11]
    KILMER M E, MARTIN C D. Factorization strategies for third-order tensors[J]. Linear Algebra and Its Applications, 2011, 435(3): 641-658. DOI: 10.1016/j.laa.2010.09.020
    [12]
    LU C, FENG J, CHEN Y, et al. Tensor robust principal component analysis with a new tensor nuclear norm[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(4): 925-938.
    [13]
    ZHANG X Y, DING Q H, LUO H B, et al. Infrared small target detection based on an image-patch tensor model[J]. Infrared Phy-sics & Technology, 2019, 99: 55-63.
    [14]
    ZHANG L D, PENG Zh M. Infrared small target detection based on partial sum of the tensor nuclear norm[J]. Remote Sensing, 2019, 11(4): 382. DOI: 10.3390/rs11040382
    [15]
    SUN Y, YANG J G, LONG Y L, et al. Infrared patch-tensor model with weighted tensor nuclear norm for small target detection in a single frame[J]. IEEE Access, 2018, 6: 76140-76152. DOI: 10.1109/ACCESS.2018.2883727
    [16]
    ZHANG P, ZHANG L, WANG X, et al. Edge and corner awareness-based spatial-temporal tensor model for infrared small-target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(12): 10708-10724.
    [17]
    LIU H K, ZHANG L, HUANG H. Small target detection in infrared videos based on spatio-temporal tensor model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(12): 8689-8700. DOI: 10.1109/TGRS.2020.2989825
    [18]
    PANG D D, SHAN T, LI W, et al. Facet derivative-based multidirectional edge awareness and spatial-temporal tensor model for infrared small target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5001015.
    [19]
    HALKO N, MARTINSSON P G, TROPP J A. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions[J]. SIAM Review, 2011, 53(2): 217-288. DOI: 10.1137/090771806
    [20]
    ZHANG J, SAIBABA A K, KILMER M E, et al. A randomized tensor singular value decomposition based on the t-product[J]. Nume-rical Linear Algebra with Applications, 2018, 25(5): e2179. DOI: 10.1002/nla.2179
    [21]
    TARZANAGH D A, MICHAILIDIS G. Fast randomized algorithms for t-product based tensor operations and decompositions with applications to imaging data[J]. SIAM Journal on Imaging Sciences, 2018, 11(4): 2629-2664. DOI: 10.1137/17M1159932
    [22]
    BULUC A, KOLDA T G, WILD S M, et al. Randomized algorithms for scientific computing[EB/OL]. (2022-03-21)[2023-01-12]. https://arxiv.53yu.com/abs/2104.11079.
    [23]
    KÖTHE U. Edge and junction detection with an improved structure tensor[C]//Joint Pattern Recognition Symposium. Berlin, Heidelberg, Germany: Springer, 2003: 25-32.
    [24]
    JIANG T X, HUANG T Z, ZHAO X L, et al. Multi-dimensional imaging data recovery via minimizing the partial sum of tubal nuclear norm[J]. Journal of Computational and Applied Mathematics, 2020, 372: 112680. DOI: 10.1016/j.cam.2019.112680
    [25]
    KOLDA T G, BADER B W. Tensor decompositions and applications[J]. SIAM Review, 2009, 51(3): 455-500. DOI: 10.1137/07070111X
    [26]
    BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 2011, 3(1): 1-122.
    [27]
    CANDES E J, WAKIN M B, BOYD S P. Enhancing sparsity by reweighted ℓ1 minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14(5): 877-905.
    [28]
    CHE M, WANG X Zh, WEI Y M, et al. Fast randomized tensor singular value thresholding for low-rank tensor optimization[J]. Numerical Linear Algebra with Applications, 2022: 29(6): e2444. DOI: 10.1002/nla.2444
    [29]
    ZHANG Y, SHAO Y, SHEN J, et al. Infrared image impulse noise suppression using tensor robust principal component analysis and truncated total variation[J]. Applied Optics, 2021, 60(16): 4916-4929. DOI: 10.1364/AO.421081
    [30]
    van LOAN C F, GOLUB G H. Matrix computations[M]. 4th ed. Baltimore MD, USA: The Johns Hopkins University Press, 2013: 488-493.
    [31]
    HUI B W, SONG Zh Y, FAN H Q, et al. A dataset for infrared image dim-small aircraft target detection and tracking under ground/air background [DB/OL]. (2019-10-28)[2023-04-03]. https://www.scidb.cn/en/detail?dataSetId=720626 4209334 59968&version=V1&dataSetType=journal&tag=2&language=zh_CN.
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article views (9) PDF downloads (5) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return