Advanced Search
LI Junhui, REN Weibin, REN Yuzhong, LEI Weining. Research progress of laser remanufacturing materials and processes for titanium alloy parts[J]. LASER TECHNOLOGY, 2023, 47(3): 353-359. DOI: 10.7510/jgjs.issn.1001-3806.2023.03.011
Citation: LI Junhui, REN Weibin, REN Yuzhong, LEI Weining. Research progress of laser remanufacturing materials and processes for titanium alloy parts[J]. LASER TECHNOLOGY, 2023, 47(3): 353-359. DOI: 10.7510/jgjs.issn.1001-3806.2023.03.011

Research progress of laser remanufacturing materials and processes for titanium alloy parts

More Information
  • Received Date: April 18, 2022
  • Revised Date: July 08, 2022
  • Published Date: May 24, 2023
  • In order to deeply understand the development status of laser remanufacture of titanium alloys, the research progress of laser remanufacturing of titanium alloy was reviewed from the aspects of remanufacturing materials, processes, and methods. The remanufacturing characteristics and applications of metal alloy powder, ceramic powder, rare earth and its oxide powder coatings were described. The effects of main process parameters on the morphology and properties of coatings were discussed. The applications of numerical simulation, auxiliary process and composite process in laser remanufacturing of titanium alloy parts were discussed. Finally, the development trend of laser remanufacturing of titanium alloy parts was prospected.
  • [1]
    霍东兴, 梁精龙, 李慧, 等. 钛合金研究及应用进展[J]. 铸造技术, 2016, 37(10): 2065-2066. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201610007.htm

    HUO D X, LIANG J L, LI H, et al. Progress of research and application of titanium alloy[J]. Foundry Technology, 2016, 37(10): 2065-2066(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201610007.htm
    [2]
    李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(Z1): 280-282. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2020S1064.htm

    LI Y, ZHAO Y Q, ZENG W D. Application and development of aerial titanium alloys[J]. Materials Reports, 2020, 34(Z1): 280-282(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2020S1064.htm
    [3]
    WENG F, CHEN Ch Zh, YU H J. Research status of laser cladding on titanium and its alloys: A review[J]. Materials & Design, 2014, 58: 412-425.
    [4]
    关振中. 激光加工工艺手册[M]. 2版. 北京: 中国计量出版社, 2007: 288-293.

    GUAN Zh Zh. Laser processing technology manual[M]. 2nd ed. Beijing: China Metrology Publishing House, 2007: 288-293(in Chin-ese).
    [5]
    CHEN J M, GUO Ch, ZHOU J S. Microstructure and tribological properties of laser cladding Fe-based coating on pure Ti substrate[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(9): 2171-2178. DOI: 10.1016/S1003-6326(11)61445-3
    [6]
    沈婧怡, 任维彬, 薛亚平, 等. TC4叶片裂纹及体积损伤激光修复工艺方法[J]. 红外与激光工程, 2019, 48(6): 0606008. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201906031.htm

    SHEN J Y, REN W B, XUE Y P, et al. Laser repairing process of TC4 blades with crack and volume damage[J]. Infrared and Laser Engineering, 2019, 48(6): 0606008(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201906031.htm
    [7]
    JEYAPRAKASH N, YANG Ch H, TSENG S P. Characterization and tribological evaluation of NiCrMoNb and NiCrBSiC laser cladding on near-α titanium alloy[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(5): 2347-2361.
    [8]
    覃鑫, 祁文军, 左小刚. TC4钛合金表面激光熔覆NiCrCoAlY-Cr3C2复合涂层的摩擦和高温抗氧化性能[J]. 材料工程, 2021, 49(12): 107-114. https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC202112012.htm

    QIN X, QI W J, ZUO X G. Friction and high temperature oxidation resistance of laser cladding NiCrCoAlY-Cr3C2 composite coating on TC4 titanium alloy[J]. Journal of Materials Engineering, 2021, 49(12): 107-114(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC202112012.htm
    [9]
    LIU S S, WANG Y H, ZHANG W P. Microstructure and wear resistance of laser clad cobalt-based composite coating on TA15 surface[J]. Rare Metal Materials and Engineering, 2014, 43(5): 1041-1046. DOI: 10.1016/S1875-5372(14)60097-7
    [10]
    WENG F, YU H J, CHEN Ch Zh, et al. Microstructures and wear properties of laser cladding Co-based composite coatings on Ti-6Al-4V[J]. Materials & Design, 2015, 80: 174-181.
    [11]
    DIAO Y H, ZHANG K M. Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB2 powders[J]. A-pplied Surface Science, 2015, 352: 163-168. DOI: 10.1016/j.apsusc.2015.04.030
    [12]
    WANG W F, JIN L Sh, YANG J G, et al. Directional growth whisker reinforced Ti-base composites fabricated by laser cladding[J]. Surface and Coatings Technology, 2013, 236: 45-51. DOI: 10.1016/j.surfcoat.2013.05.052
    [13]
    任维彬, 薛亚平, 周金宇, 等. 激光再制造边部减薄Ti-6Al-4V叶片覆层与界面性能控制[J]. 稀有金属材料与工程, 2020, 49(7): 2400-2406. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE202007031.htm

    REN W B, XUE Y P, ZHOU J Y, et al. Coating and interface performance control of Ti-6Al-4V blade with thinned edge for laser remanufacture[J]. Rare Metal Materials and Engineering, 2020, 49(7): 2400-2406(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-COSE202007031.htm
    [14]
    谭金花, 孙荣禄, 牛伟, 等. TC4合金激光熔覆材料的研究现状[J]. 材料导报, 2020, 34(8): 15132-15137. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202015018.htm

    TAN J H, SUN R L, NIU W, et al. Research status of TC4 alloy laser cladding materials[J]. Materials Reports, 2020, 34(8): 15132-15137(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202015018.htm
    [15]
    SAMAR A S A, ABDEL H, ADEL N, et al. Laser powder cladding of Ti-6Al-4V α/β alloy[J]. Materials, 2017, 10(10): 1178-1193. DOI: 10.3390/ma10101178
    [16]
    刘新乾, 周后明, 赵振宇, 等. TiB2含量对激光熔覆钴基涂层组织和性能的影响[J]. 金属热处理, 2018, 43(10): 168-172. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201810048.htm

    LIU X Q, ZHOU H M, ZHAO Zh Y, et al. Effect of TiB2 content on microstructure and properties of laser clad Co-based coating[J]. Heat Treatment of Metals, 2018, 43(10): 168-172(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201810048.htm
    [17]
    刘亚楠, 谷米, 孙荣禄, 等. 钛合金表面激光熔覆原位制备TiC/Ti2Ni复合涂层微观组织及性能研究[J]. 中国激光, 2021, 48(14): 1402011. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202114012.htm

    LIU Y N, GU M, SUN R L, et al. Microstructure and properties of in-situ TiC/Ti2Ni composite coating prepared via laser cladding on titanium alloy[J]. Chinese Journal of Lasers, 2021, 48(14): 1402011(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202114012.htm
    [18]
    ZHANG H X, DAI J J, MA Z W, et al. Effect of Y2O3 on microstructures and wear resistance of TiC reinforced Ti-Al-Si coating by laser cladding on TC4 alloy[J]. Surface Review and Letters, 2019, 26(10): 1950077. DOI: 10.1142/S0218625X1950077X
    [19]
    DAS A K, SHARIFF S M, CHOUDHURY A R. Effect of rare earth oxide (Y2O3) addition on alloyed layer synthesized on Ti-6Al-4V substrate with Ti+SiC+h-BN mixed precursor by laser surface engineering[J]. Tribology International, 2016, 95: 35-43. DOI: 10.1016/j.triboint.2015.10.035
    [20]
    GONG Y L, WU M P, MIAO X J, et al. Effect of CeO2 on crack sensitivity and tribological properties of Ni60A coatings prepared by laser cladding[J/OL]. (2021-04-28)[2022-04-07]. https://journals.sagepub.com/doi/10.1177/16878140211013125.
    [21]
    何星华, 许晓静, 戈晓岚, 等. TC4钛合金表面激光熔覆含La2O3的F101镍基涂层[J]. 稀有金属材料与工程, 2017, 46(4): 1074-1079. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201704035.htm

    HE X H, XU X J, GE X L, et al. F101 Ni-based coating containing La2O3 by laser cladding on TC4 titanium alloy[J]. Rare Metal Materials and Engineering, 2017, 46(4): 1074-1079(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201704035.htm
    [22]
    MOHAMMAD N, REZA S R, MASOUD B. An empirical-statistical model for laser cladding of Ti-6Al-4V powder on Ti-6Al-4V substrate[J]. Optics and Laser Technology, 2018, 100: 265-271. DOI: 10.1016/j.optlastec.2017.10.015
    [23]
    赵欣鑫, 肖华强, 游川川, 等. TC4表面激光熔覆TiAl合金涂层的工艺和组织性能[J]. 激光技术, 2021, 45(6): 697-702. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.004

    ZHAO X X, XIAO H Q, YOU Ch Ch, et al. Process and microstructure properties of laser cladding TiAl alloy coating on TC4 surface[J]. Laser Technology, 2021, 45(6): 697-702(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.06.004
    [24]
    高霁, 宋德阳, 冯俊文. 工艺参数对钛合金激光熔覆CBN涂层几何形貌的影响[J]. 表面技术, 2015, 44(1): 77-87. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201501016.htm

    GAO J, SONG D Y, FENG J W. Influence of processing parameters on geometrical features of CBN coatings by laser cladding on titanium alloy surface[J]. Surface Technology, 2015, 44(1): 77-87(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201501016.htm
    [25]
    张晓伟, 刘洪喜, 蒋业华, 等. 激光铝热还原法制备Al2O3/Ti-Al基复合涂层[J]. 无机材料学报, 2013, 28(9): 1033-1039. https://www.cnki.com.cn/Article/CJFDTOTAL-WGCL201309023.htm

    ZHANG X W, LIU H X, JIANG Y H, et al. Microstructure of Al2O3/Ti-Al composite coatings prepared by laser aluminum thermal reduction processing[J]. Journal of Inorganic Materials, 2013, 28(9): 1033-1039(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WGCL201309023.htm
    [26]
    WENG F, YU H J, CHEN Ch Zh, et al. Effect of process parameters on the microstructure evolution and wear property of the laser cladding coatings on Ti-6Al-4V alloy[J]. Journal of Alloys and Compounds, 2017, 692: 989-996. DOI: 10.1016/j.jallcom.2016.09.071
    [27]
    谭金花, 孙荣禄, 牛伟, 等. 激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响[J]. 材料导报, 2020, 34(6): 12094-12100. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202012019.htm

    TAN J H, SUN R L, NIU W, et al. Effect of laser scanning speed on microstructure and properties of TC4 alloy surface laser cladding composite coating[J]. Materials Reports, 2020, 34(6): 12094-12100(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202012019.htm
    [28]
    邱莹, 张凤英, 胡腾腾, 等. 激光功率对TC4表面熔覆Ti40阻燃钛合金组织及硬度的影响[J]. 中国激光, 2019, 46(11): 1102011. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201911022.htm

    QIU Y, ZHANG F Y, HU T T, et al. Effect of laser power on microstructure and hardness of Ti40 flame-retardant titanium alloy deposited by laser cladding on TC4 surface[J]. Chinese Journal of Lasers, 2019, 46(11): 1102011(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201911022.htm
    [29]
    赵盛举, 祁文军, 黄艳华, 等. TC4表面激光熔覆Ni60基涂层温度场热循环特性数值模拟研究[J]. 表面技术, 2020, 49(2): 301-308. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202002039.htm

    ZHAO Sh J, QI W J, HUANG Y H, et al. Numerical simulation study on thermal cycle characteristics of temperature field of TC4 surface laser cladding Ni60 based coating[J]. Surface Technology, 2020, 49(2): 301-308(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202002039.htm
    [30]
    马俊峰, 王骏, 唐立平, 等. 钛合金表面激光熔覆碳化硼/钴基复合涂层的温度场模拟及试验研究[J]. 应用激光, 2021, 41(4): 732-737. https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG202104008.htm

    MA J F, WANG J, TANG L P, et al. Temperature field simulation and experimental research of boron carbide/cobalt-based composite coating fabricated by laser cladding on titanium Alloy[J]. Applied Laser, 2021, 41(4): 732-737(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG202104008.htm
    [31]
    郭卫, 李凯凯, 柴蓉霞, 等. 激光熔覆304不锈钢稀释效应的数值模拟与实验[J]. 激光与光电子学进展, 2019, 56(5): 051402. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201905020.htm

    GUO W, LI K K, CHAI R X, et al. Numerical simulation and experiment of dilution effect of laser cladding 304 stainless steel[J]. Laser & Optoelectronics Progress, 2019, 56(5): 051402(in Chin-ese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201905020.htm
    [32]
    王予, 黄延禄, 杨永强. 同轴送粉激光定向能量沉积IN718的数值模拟[J]. 中国激光, 2021, 48(6): 0602115. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202106017.htm

    WANG Y, HUANG Y L, YANG Y Q. Numerical simulation on coaxial powder feeding laser directional energy deposition of IN718[J]. Chinese Journal of Lasers, 2021, 48(6): 0602115(in Chin-ese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202106017.htm
    [33]
    张天刚, 张倩, 姚波, 等. TC4表面Ni基激光熔覆层温度场和应力场的数值模拟[J]. 激光与光电子学进展, 2021, 58(3): 0314003. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202103024.htm

    ZHANG T G, ZHANG Q, YAO B, et al. Numerical simulation of temperature field and stress field of Ni-based laser cladding layer on TC4 surface[J]. Laser & Optoelectronics Progress, 2021, 58(3): 0314003(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202103024.htm
    [34]
    梁广冰, 朱锦洪, 尹丹青, 等. TC4钛合金激光熔覆路径选择数值模拟研究[J]. 河南科技大学学报(自然科学版), 2021, 42(6): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX202106004.htm

    LIANG G B, ZHU J H, YI D Q, et al. Numerical simulation of laser cladding path selection for TC4 titanium alloy[J]. Journal of Henan University of Science and Technology (Natural Science Edition), 2021, 42(6): 12-18(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX202106004.htm
    [35]
    赫庆坤, 宋立新. 不同厚度基体激光熔覆应力分析[J]. 激光杂志, 2018, 39(1): 60-63. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ201801013.htm

    HE Q K, SONG L X. Stress analysis of laser cladding on different thickness substrates[J]. Journal of Laser, 2018, 39(1): 60-63(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ201801013.htm
    [36]
    LEI Y W, SUN R L, TANG Y, et al. Numerical simulation of temperature distribution and TiC growth kinetics for high power laser clad TiC/NiCrBSiC composite coatings[J]. Optics and Laser Technology, 2011, 44(4): 1141-1147.
    [37]
    李德英, 张坚, 邓志成. 增强相颗粒对激光熔注凝固组织影响的相场法研究[J]. 热加工工艺, 2018, 47(10): 179-182. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201810049.htm

    LI D Y, ZHANG J, DENG Zh Ch. Phase field study on the effect of reinforced phase particles on the solidification structure of laser melt injection[J]. Hot Working Technology, 2018, 47(10): 179-182(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201810049.htm
    [38]
    齐海波, 张云浩, 冯校飞, 等. 多元合金激光增材制造凝固组织演变模拟[J]. 焊接学报, 2020, 41(5): 71-77. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB202005013.htm

    QI H B, ZHANG Y H, FENG X F, et al. Simulation of solidification microstructure evolution in laser additive manufacturing of multicomponent alloy[J]. Transactions of the China Welding Institution, 2020, 41(5): 71-77(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB202005013.htm
    [39]
    MA G Y, YAN S, WU D J, et al. Microstructure evolution and mechanical properties of ultrasonic assisted laser clad yttria stabilized zirconia coating[J]. Ceramics International, 2017, 43(13): 9622-9629.
    [40]
    杨光, 薛雄, 钦兰云, 等. 旋转磁场对激光熔凝钛合金熔池的影响[J]. 稀有金属材料与工程, 2016, 45(7): 1804-1810. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201607032.htm

    YANG G, XUE X, QIN L Y, et al. Influence of a rotating magnetic field on laser melting titanium alloy melt pool[J]. Rare Metal Materials and Engineering, 2016, 45(7): 1804-1810(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201607032.htm
    [41]
    李成, 王玉玲, 姜芙林, 等. 超声辅助对激光熔覆Al2O3-ZrO2陶瓷涂层力学性能的影响[J]. 表面技术, 2020, 49(11): 309-319. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202011036.htm

    LI Ch, WANG Y L, JIANG F L, et al. Effect of ultrasonic assistance on mechanical properties of laser cladding Al2O3-ZrO2 ceramic coating[J]. Surface Technology, 2020, 49(11): 309-319(in Ch-inese). https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202011036.htm
    [42]
    REN W B, ZHUANG B L, LEI W N, et al. Microstructure and performance evolution of Ti-6Al-4V alloy coating by laser cladding and laser shocking composite remanufacture[J]. Optics and Laser Technology, 2021, 143: 107342.
    [43]
    FARAYIBI P K, ABIOYE T E, MURRAY J W, et al. Surface improvement of laser clad Ti-6Al-4V using plain water jet and pulsed electron beam irradiation[J]. Journal of Materials Processing Technology, 2015, 218: 1-11.
    [44]
    李崇桂, 封小松, 卢庆华, 等. 激光重熔Al2O3-TiO2涂层的强韧性能[J]. 焊接学报, 2013, 34(9): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201309016.htm

    LI Ch G, FENG X S, LU Q H, et al. Strength and toughness of laser-remelted Al2O3-TiO2 coatings[J]. Transactions of the China Welding Institution, 2013, 34(9): 63-66(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201309016.htm

Catalog

    Article views (574) PDF downloads (5) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return