Advanced Search
LIU Yuli, SHEN Jian, SUN Yanming, LI Rui. Transport of micro-nano mass induced by laser on 1-D carriers[J]. LASER TECHNOLOGY, 2023, 47(1): 140-146. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.022
Citation: LIU Yuli, SHEN Jian, SUN Yanming, LI Rui. Transport of micro-nano mass induced by laser on 1-D carriers[J]. LASER TECHNOLOGY, 2023, 47(1): 140-146. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.022

Transport of micro-nano mass induced by laser on 1-D carriers

More Information
  • Received Date: January 18, 2022
  • Revised Date: March 23, 2022
  • Published Date: January 24, 2023
  • In order to explore the controllable transport of micro-nano mass in 1-D materials, a method that generate thermal gradient on carbon nanocoil by focused laser rays was adopted. Micro-nano paraffin transport process along thermally-induced carbon nanocoil irradiated by focused laser rays was analyzed experimentally and theoretically. The results show that when the laser is focused on the carbon nanocoil, the micro-nano paraffin sphere can be moved from the high temperature region to the low temperature region. The paraffin transport process in a single direction or in both directions along the carbon nanocoil can be controlled by changing the position of laser radiation. The mass and distance transported along carbon nanocoil can be controlled by adjusting the laser power. When the laser current is respectively 33.0 mA, 36.0 mA, 39.0 mA, and 42.0 mA, the transport distance of the micro-nano paraffin is 0.69 μm, 1.40 μm, 2.00 μm and 2.50 μm, respectively. These results present a new method for micro-nano mass transporting controllably on 1-D materials.
  • [1]
    贺思远. 纳通道中颗粒的输运与检测研究[D]. 北京: 中国科学院大学, 2016: 3-30.

    HE S Y. The transport and detection of nanoparticle in nanochannel[D]. Beijing: University of Chinese Academy of Sciences, 2016: 3-30 (in Chinese).
    [2]
    JOENSSON H N, SVAHN H A. Droplet microfluidics-a tool for single-cell analysis[J]. Angewandte Chemie International Edition, 2012, 51(49): 12176-12192. DOI: 10.1002/anie.201200460
    [3]
    EIJKEL J C T, BERG A V D. Nanofluidics: What is it and what can we expect from it[J]. Microfluidics and Nanofluidics, 2005, 1(3): 249-267. DOI: 10.1007/s10404-004-0012-9
    [4]
    SCHOCH R B, HAN J, RENAUD P. Transport phenomena in nanofluidics[J]. Reviews of Modern Physics, 2008, 80(3): 839-883. DOI: 10.1103/RevModPhys.80.839
    [5]
    NAIR P R, WU H A, JAYARAM A P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067): 442-444. DOI: 10.1126/science.1211694
    [6]
    HOLT J K, GYU P H, WANG Y, et al. Fast mass transport through sub-2-nanometer carbon nanotubes[J]. Science, 2006, 312(5776): 1034-1037. DOI: 10.1126/science.1126298
    [7]
    HUMMER G, RASAIAH J C, NOWORYTAO J P. Water conduction through the hydrophobic channel of a carbon nanotube[J]. Nature, 2001, 414(6860): 188-190. DOI: 10.1038/35102535
    [8]
    SECCHI E, MARBACH S, NIGUōS A, et al. Massive radius-dependent flow slippage in carbon nanotubes[J]. Nature, 2016, 537(7619): 210-213. DOI: 10.1038/nature19315
    [9]
    FENG J, GRAF M, LIU K, et al. Single-layer MoS2 nanopores as nanopower generators[J]. Nature, 2016, 536(7615): 197-200. DOI: 10.1038/nature18593
    [10]
    FEBG J, LIU K, GRAF M, et al. Observation of ionic Coulomb blockade in nanopores[J]. Nature Materials, 2016, 15(8): 850-855. DOI: 10.1038/nmat4607
    [11]
    OU X, YU Y, WU R, et al. Shuttle suppression by polymer-sealed graphene-coated polypropylene separator[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5534-5542.
    [12]
    NAIR P R, WU H A, JAYARAM P N, et al. Unimpeded permeation of water through helium-leak-tight gra phene-based membranes[J]. Science, 2012, 335(6067): 442-444. DOI: 10.1126/science.1211694
    [13]
    ABRAHAM J, VASU K S, WILLIAMS C D, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nature Nanotechnology, 2017, 12(6): 546-550. DOI: 10.1038/nnano.2017.21
    [14]
    YANG Q, SU Y, CHI C, et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation[J]. Nature Materials, 2017, 16(12): 1198-1202. DOI: 10.1038/nmat5025
    [15]
    CHEN L, SHI G, SHEN J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Nature, 2017, 550(7676): 380-383. DOI: 10.1038/nature24044
    [16]
    STEIN D, KRUITHOF M, DEKKER C. Surface-charge-governed ion transport in nanofluidic channels[J]. Physical Review Letters, 2004, 93(3): 035901. DOI: 10.1103/PhysRevLett.93.035901
    [17]
    MARTINS D, CHU V, PRAZERES D M F, et al. Ionic conductivity measurements in a SiO2 nanochannel with PDMS interconnects[J]. Procedia Chemistry, 2009, 1(1): 1095-1098. DOI: 10.1016/j.proche.2009.07.273
    [18]
    DUAN C, MAJUMDAR A. Anomalous ion transport in 2-nm hydrophilic nanochannels[J]. Nature Nanotechnology, 2010, 5(12): 848-852. DOI: 10.1038/nnano.2010.233
    [19]
    XIE Q, ALIBAKHSHI M A, JIAO S, et al. Fast water transport in graphene nanofluidic channels[J]. Nature Nanotechnology, 2018, 13(3): 238-245. DOI: 10.1038/s41565-017-0031-9
    [20]
    王奉超, 朱银波, 吴恒安. 纳米通道受限液体的结构和输运[J]. 中国科学: 物理学力学天文学, 2018, 48(9): 094609. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201809009.htm

    WANG F Ch, ZHU Y B, WU H A. Structure and transport of confined liquid in nanochannels[J]. Scientia Sinica (Physica, Mecha-nica & Astronomica), 2018, 48(9): 094609(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201809009.htm
    [21]
    OYAZUA E, WALTHER J H, MEGARIDIS C M, et al. Carbon nanotubes as thermally induced water pumps[J]. ACS Nano, 2017, 11(10): 9997-10002. DOI: 10.1021/acsnano.7b04177
    [22]
    REGAN B C, ALONI S, RITCHIE R O, et al. Carbon nanotubes as nanoscale mass conveyors[J]. Nature, 2004, 428(6986): 924-927. DOI: 10.1038/nature02496
    [23]
    AMELIA B, RICCARDO R, EDUARDO R, et al. Subnanometer motion of cargoes driven by thermal gradients along carbon nanotubes[J]. Science, 2008, 320(5877): 775-778. DOI: 10.1126/science.1155559
    [24]
    SUN Y M, PAN L J, LIU Y L, et al. Micro-bubble generated by laser irradiation on an individual carbon nanocoil[J]. Applied Surface Science, 2015, 345: 428-432. DOI: 10.1016/j.apsusc.2015.03.153
    [25]
    刘玉丽. 单根碳纳米线圈上的激光光力、光热转换及其应用的研究[D]. 大连: 大连理工大学, 2012: 26-52.

    LIY Y L. Photo-thermal and light to force conversions in single carbon nanocoils and their applications[D]. Dalian: Dalian University of Technology, 2012: 26-52(in Chinese).
    [26]
    尹培琪, 王新兵, 武耀星, 等. 脉冲Nd∶YAG激光诱导水滴等离子体的实验研究[J]. 激光技术, 2020, 44(6): 726-731. DOI: 10.7510/jgjs.issn.1001-3806.2020.06.014

    YIN P Q, WANG X B, WU Y X, et al. Experimental study on water droplet plasma indu ced by pulse Nd∶YAG laser[J]. Laser Technology, 2020, 44(6): 726-731(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.06.014
    [27]
    罗贤锋, 游利兵, 徐健, 等. 基于激光诱导击穿光谱的元素成像技术研究进展[J]. 激光技术, 2020, 44(1): 66-73. DOI: 10.7510/jgjs.issn.1001-3806.2020.01.012

    LUO X F, YOU L B, XU J, et al. Research progress of elemental imaging based on laser-induced breakdown spectroscopy[J]. Laser Technology, 2020, 44(1): 66-73(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.01.012
    [28]
    ZHAO Y P, WANG J Zh, HUANG H, et al. Growth of carbon nanocoils by porous α-Fe2O3/SnO2 catalyst and its buckypaper for high efficient adsorption[J]. Nano-Micro Letters, 2020, 12(2): 141-157.
    [29]
    魏巍. 含纳米颗粒石蜡光学特性及其太阳能吸收性能初探[D]. 大庆: 东北石油大学, 2019: 15-20.

    WEI W. Research on optical properties and solar absorption properties of nanoparticle-containing paraffin[D]. Daqing: Northeast Petroleum University, 2019: 15-20(in Chinese).
    [30]
    MA H, PAN L J, ZHAO Q, et al. Thermal conductivity of a single carbon nanocoil measured by field-emission induced thermal radiation[J]. Carbon, 2011, 50(3): 778-783.
    [31]
    王鹏. 碳纳米线圈的光力、光热特性研究及其作为柔性探针的应用[D]. 大连: 大连理工大学, 2019: 10-40.

    WANG P. Research on opt-mechanical and opt-thermal properties of carbon nanocoils and their applications as flexible probes[D]. Dalian: Dalian University of Technology, 2019: 10-40(in Ch-inese).
    [32]
    胡定华, 许肖永, 林肯, 等. 石蜡/膨胀石墨/石墨片复合相变材料导热性能研究[J]. 工程热物理学报, 2021, 42(9): 2414-2418. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB202109027.htm

    HU D H, XU X Y, LIN K, et al. Study on heat conductivity of para-ffffin/expanded graphite/graphite sheet composite material[J]. Journal of Engineering Thermophysics, 2021, 42(9): 2414-2418 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB202109027.htm
    [33]
    WANG P, PAN L J, LI Ch W, et al. Highly efficient near-infrared photothermal conversion of a single carbon nanocoil indicated by cell ejection[J]. Journal of Physical Chemistry, 2018, C122(48): 27696-27701.
    [34]
    DARHUBER A A, VALENTNO J P, TROIAN S M, et al. Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays[J]. Journal of Microelectromechanical Systems, 2003, 12(6): 873-879.
    [35]
    钟源. 液滴撞击不同固体表面动力学特性及热毛细迁移研究[D]. 南昌: 南昌大学, 2019: 39-442.

    ZHONG Y. Research on dynamic characteristics of droplets impacting different solid surfaces and thermocapillary migration[D]. Nanchang: Nanchang University, 2019: 39-442(in Chinese).
    [36]
    高世桥, 刘海鹏. 毛细力学[M]. 北京: 科学出版社, 2010: 32-36.

    GAO Sh Q, LIU H P. Capillary mechanics[M]. Beijing: Science Press, 2010: 32-36(in Chinese).
    [37]
    METTU S, CHAUDHURY M K. Motion of drops on a surface induced by thermal gradient and vibration[J]. Langmuir, 2008, 24(19): 10833-10837.
  • Cited by

    Periodical cited type(6)

    1. 赵军峰,冯斌,王浩圣. 高性能半导体激光器电源系统设计与研究. 应用激光. 2024(02): 113-124 .
    2. 盖俊帅,马玉婷,张运海,杨皓旻,刘玉龙. 用于眼底成像的双光楔裂像电控调焦系统. 激光技术. 2024(04): 484-490 . 本站查看
    3. 郭俊超,韩耀锋,张晓辉,李龙骧,王诚,寿少峻,马世伟,孙翌乔. 机载130 mJ激光照射器的脉冲驱动电源设计. 激光杂志. 2024(09): 14-18 .
    4. 金冬月,洪福临,张万荣,张洪源,王毅华,王焕哲,王楷尧,关宝璐. 垂直腔面发射激光器阵列的热设计研究进展. 激光技术. 2024(06): 777-789 . 本站查看
    5. 王婷,魏明,宋巍. 窄脉冲激光器驱动电路延时反馈控制研究. 激光杂志. 2024(12): 40-44 .
    6. 许源,王武,倪小龙,闫钰锋,于信,白素平. 一种GaN FET的窄脉冲激光器驱动电源系统设计. 计算机测量与控制. 2022(09): 272-279 .

    Other cited types(5)

Catalog

    Article views (8) PDF downloads (5) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return