Analysis of driving circuit characteristics of high-power pulsed xenon lamp
-
Graphical Abstract
-
Abstract
In order to enhance the driving efficiency of high-energy pulsed laser and optimize the engineering realization effect of the driving circuit, the theoretical analysis and simulation verification of the discharge characteristics of the pulsed xenon lamp and the pulse-forming network were carried out by means of circuit analysis and simulation, and the correlation data between the influencing factors and the pulse current waveform were obtained. The results show that both the rectangularity of the pulse current waveform and the difficulty of engineering implementation increases with the number of nodes incresaing. The ideal number of nodes is about 5, and the peak amplitude decreases with the decrease of the final chain inductance, and the ideal value of the weighted value is about 0.8. The rising speed decreases with the increase of the leading inductance, and the ideal value range of the weighted value is 1.2~1.4. This research is beneficial to further promote the engineering application and development of the driving circuit of high energy pulse xenon lamp.
-
-