Advanced Search
REN Yahui, LIN Juping, TONG Yong, ZHANG Qiang, LIU Pan, XIA Chunyan, WANG Guoshuai. Analysis of driving circuit characteristics of high-power pulsed xenon lamp[J]. LASER TECHNOLOGY, 2022, 46(3): 397-401. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.016
Citation: REN Yahui, LIN Juping, TONG Yong, ZHANG Qiang, LIU Pan, XIA Chunyan, WANG Guoshuai. Analysis of driving circuit characteristics of high-power pulsed xenon lamp[J]. LASER TECHNOLOGY, 2022, 46(3): 397-401. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.016

Analysis of driving circuit characteristics of high-power pulsed xenon lamp

More Information
  • Received Date: March 31, 2021
  • Revised Date: April 25, 2021
  • Published Date: May 24, 2022
  • In order to enhance the driving efficiency of high-energy pulsed laser and optimize the engineering realization effect of the driving circuit, the theoretical analysis and simulation verification of the discharge characteristics of the pulsed xenon lamp and the pulse-forming network were carried out by means of circuit analysis and simulation, and the correlation data between the influencing factors and the pulse current waveform were obtained. The results show that both the rectangularity of the pulse current waveform and the difficulty of engineering implementation increases with the number of nodes incresaing. The ideal number of nodes is about 5, and the peak amplitude decreases with the decrease of the final chain inductance, and the ideal value of the weighted value is about 0.8. The rising speed decreases with the increase of the leading inductance, and the ideal value range of the weighted value is 1.2~1.4. This research is beneficial to further promote the engineering application and development of the driving circuit of high energy pulse xenon lamp.
  • [1]
    YAN J X. Laser weapons [M]. Beijing: National Defense Industry Press, 2016: 29-30(in Chinese).
    [2]
    XU J, LIANG M, LIU D Sh, et al. Research on power factor correction technology of pulse laser system charging power supply[J]. Laser Technology, 2020, 44(6): 732-737(in Chinese).
    [3]
    LI B, LI B T, HUANG B, et al. Design of high reliability pulse xe-non lamp power supply[J]. High Power Laser and Particle Beams, 2017, 29(6): 065004(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-QJGY201706009.htm
    [4]
    KIM K. Time-dependent one-dimensional modeling of pulsed plasma discharge in a capillary plasma device[J]. IEEE Transactions on Plasma Science, 2003, 31(4): 729-735. DOI: 10.1109/TPS.2003.815472
    [5]
    LIU F C, ZHAO X J, HE S Ch. Design and experimental analysis of DSP-based PFN trigger timing control system[J]. High Voltage Engineering, 2013, 39(7): 1778-1783(in Chinese). https://oversea.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2013&filename=GDYJ201307038
    [6]
    LIU F C, ZHAO X J, HE S Ch. The design of a DSP-based PFN tri-gger timing control system and the experimental study[C]//16th International Symposium on Electromagnetic Launch Technology (EML). New York, USA: IEEE, 2012: 1-6.
    [7]
    CHANG D I, LONG B, CHIU D, et al. A pulse forming network and test fixture for screening electrothermal chemical candidate propellants[J]. IEEE Transactions on Magnetics, 1993, 29(1): 919-922. DOI: 10.1109/20.195700
    [8]
    LI Zh Q, YANG J H, ZHANG J D, et al. A compact repetitive PFN-marx generator[J]. High Power Laser and Particle Beams, 2016, 28(1): 015013(in Chinese). https://www.researchgate.net/publication/308191650_A_compact_repetitive_PFN-marx_generator
    [9]
    TIAN J Ch, SONG X Q, LI Z L. Theoretical analysis and calculation of HPM pulse forming network[J]. Journal of Spacecraft TT&C Technology, 2003, 22(3): 72-74(in Chinese).
    [10]
    WANG Ch W, LI H T. Theoretical analysis and design of the trapezoidal pulse forming network[J]. High Power Laser and Particle Beams, 2018, 30(3): 035005(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QJGY201803021.htm
    [11]
    TANG Y L, LIU J, LI B M. Research on discharge timing control of multi-parameter pulse forming network[J]. Journal of Physics: Conference Series, 2021, 1721(1): 012043. DOI: 10.1088/1742-6596/1721/1/012043
    [12]
    SCHOLFIELD D W, BUTCHER M D, HILKO B, et al. Vacuum switch performance in a 1.2MJ pulse forming network[J]. The Review of Scientific Instruments, 2008, 79(1/2): 024703. http://www.ncbi.nlm.nih.gov/pubmed/18315320
    [13]
    LI X Q, ZHAO J, WU H G, et al. Design of xenon flash lamp su-pply adopting integrally triggering and pre-ionization[J]. High Power Laser Particle Beams, 2014, 26(7): 075004(in Chinese). DOI: 10.3788/HPLPB20142607.75004
    [14]
    CAO Sh G, SHAO R Y, LIN W Zh, et al. Study on the dynamic model of high power flash lamp for simulation with Pspice. A-pplied Laser, 2006, 26(6): 457-459(in Chinese). https://en.cnki.com.cn/Article_en/CJFDTOTAL-YYJG200606028.htm
    [15]
    ZHAO Y Q, DONG P F, MIAO P L, et al. Study on discharge process of high performance xeon flash lamp[J]. Analytical Instrumentation, 2016, 206(4): 44-48(in Chinese). https://en.cnki.com.cn/Article_en/CJFDTOTAL-FXYQ201604010.htm
    [16]
    WANG Ch W, LI H T. Design of trapezoidal pulse forming network based on simplex optimization method [J]. High Power Laser and Particle Beams, 2020, 32(6): 065001(in Chinese).
    [17]
    LIN Q H, LI B M. Analysis on surge process generated in high power pulse forming network with capacitor energy storage system[J]. Journal of Nanjing University of Science and Technology, 2008, 32(6): 729-732(in Chinese).
    [18]
    KOECHNER W S. Solid-state laser engineering[M]. Beijing: Science Press, 2002: 257-267(in Chinese).
    [19]
    CHEN D G. Some problem in design of design of pulse forming network[J]. Modern Electronics, 1998, 63(2): 22-27(in Chinese).
    [20]
    ZHAO J, LI B T, WANG Ch W, et al. Design of pulsed power circuit based on waveform analysis[J]. High Power Laser and Particle Beams, 2017, 29(12): 065004(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-QJGY201712013.htm
    [21]
    LONG X F. Investigation of marx-PFN[D]. Changsha: National University of Defense Technology, 2007: 5-21(in Chinese).
    [22]
    LIU X S. High pulsed power technology[M]. Beijing: National Defense Industry Press, 2005: 116-119(in Chinese).
    [23]
    ZHOU T M. Principle design of light source[M]. Shanghai: Fudan University Press, 2006: 387-391(in Chinese).
    [24]
    YU Y J, FAN P Zh, FANG W G. Measurement of electrode drop of pulsed xenon lamp[J]. Laser Journal, 1979, 6(5): 41-44(in Chinese).
  • Related Articles

    [1]ZHANG Meng, FANG Yingwu, ZHANG Guangpeng. Numerical simulation of dynamic response for aluminum target debris irradiated by nanosecond pulse laser[J]. LASER TECHNOLOGY, 2023, 47(4): 541-546. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.015
    [2]LIU Yaping, PENG Xujin, ZHAO Gang, TAO Gang, GAO Heng, BAI Yang, TANG Wei, LUO Jieping. The analysis of thermal design and its simulation for air cooled YAG laser with the repetition of 50Hz[J]. LASER TECHNOLOGY, 2021, 45(6): 735-739. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.010
    [3]YANG Yinhui, ZHENG Yijun, TAN Rongqing, LI Qingxuan. Simulation analysis of magnetic pulse compression circuit[J]. LASER TECHNOLOGY, 2021, 45(1): 13-18. DOI: 10.7510/jgjs.issn.1001-3806.2021.01.003
    [4]WANG Shun, CHENG Gaofeng, LI Qiang, YANG Jianchang, YAN Zongqun. Simulation design of laser transmitting telescope[J]. LASER TECHNOLOGY, 2019, 43(1): 131-136. DOI: 10.7510/jgjs.issn.1001-3806.2019.01.026
    [5]LI Yongjun, ZOU Jian, GAN Quanlu, DENG Wenjian. Analysis and measurement on drive current characteristics of 905nm InGaAs pulse laser diodes[J]. LASER TECHNOLOGY, 2017, 41(6): 803-806. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.007
    [6]LI Xingliang, NIU Chunhui, MA Muyan, LV Yong. Finite element simulation of damage characteristics of CCD detectors under single-laser-pulse irradiation[J]. LASER TECHNOLOGY, 2016, 40(5): 730-733. DOI: 10.7510/jgjs.issn.1001-3806.2016.05.023
    [7]YUAN Xinrong, ZUO Duluo, WANG Xinbing. Simulation of magnetically switched compression discharge circuits for pulsed gas lasers[J]. LASER TECHNOLOGY, 2016, 40(2): 199-204. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.010
    [8]CHEN Yongqing, ZHANG Chentao, ZHANG Jianhuan. Simulation of temperature field of graphene substrate fabricated by laser chemical vapor deposition[J]. LASER TECHNOLOGY, 2015, 39(5): 648-653. DOI: 10.7510/jgjs.issn.1001-3806.2015.05.013
    [9]CHEN Huangfei, CHEN Yong, LI Yiyong, WANG Zhi. Simulation of atmospheric transmission characteristics of laser at 1.06μm[J]. LASER TECHNOLOGY, 2014, 38(2): 266-269. DOI: 10.7510/jgjs.issn.1001-3806.2014.02.025
    [10]HUANG Tao, HU Yi-hua, ZHAO Nan-xiang, PU Xiao-feng. Simulation and modeling of lidar waveforms returned from obscure targets[J]. LASER TECHNOLOGY, 2011, 35(1): 11-14. DOI: 10.3969/j.issn.1001-3806.2011.01.004
  • Cited by

    Periodical cited type(2)

    1. 黄金鑫,周志权,曹逸飞,赵扬. 基于n-MFSK调制的激光致声空-水跨介质通信方法. 激光技术. 2024(01): 8-13 . 本站查看
    2. 任亚辉,林菊平,李轶国,童勇. 钛酸锂电池在脉冲高能激光系统中的适用性研究. 强激光与粒子束. 2023(10): 148-153 .

    Other cited types(2)

Catalog

    Article views (11) PDF downloads (7) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return