Citation: | DU Yongxing, MIAO Xiaowei, QIN Ling, LI Baoshan. Herd counting based on VDNet convolutional neural network[J]. LASER TECHNOLOGY, 2021, 45(5): 675-680. DOI: 10.7510/jgjs.issn.1001-3806.2021.05.023 |
[1] |
TIAN L. Design of sheep number detection system[D]. Hohhot: Inner Mongolia University, 2019: 45-57(in Chinese).
|
[2] |
ZHANG L, XU J, TIAN Z, et al. Research and implementation of intelligent counting sheep system in pastoral areas[J]. Telecom Power Technologies, 2017, 34(4): 165-166(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-TXDY201704069.htm
|
[3] |
ENZWEILER M, GAVRILA D, GAVRILA D M. Monocular pedestrian detection: Survey and experiments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12): 2179-2195. DOI: 10.1109/TPAMI.2008.260
|
[4] |
JONES M J, SNOW D. Pedestrian detection using boosted features over many frames[C]// International Conference on Pattern Recognition. New York, USA: IEEE, 2008: 8-11.
|
[5] |
WU B, NEVATIA R. Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors[J]. International Journal of Computer Vision, 2007, 75(2): 247-266. DOI: 10.1007/s11263-006-0027-7
|
[6] |
FELZENSZWALB P F, GIRSHICK R B, McALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645. DOI: 10.1109/TPAMI.2009.167
|
[7] |
LIU T, TAO D. On the robustness and generalization of cauchy regression[C]// 2014 4th IEEE International Conference on Information Science and Technology (ICIST). New York, USA: IEEE, 2014: 32-37.
|
[8] |
ZHAI J Y, TU L Zh, ZHUANG Y. Saliency detection based on boundary prior and adaptive region merging[J]. Computer Engineering and Applications, 2018, 54(6): 178-182(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JSGG201806029.htm
|
[9] |
ZENG L, XU X, CAI B, et al. Multi-scale convolutional neural networks for crowd counting[C]// 2017 IEEE International Conference on Image Processing (ICIP). New York, USA: IEEE, 2017: 89-91.
|
[10] |
HUANG S Y, LI X, CHENG Zh Q, et al. Stacked pooling: Improving crowd counting by boosting scale invariance[J]. Computer Vision and Pattern Recognition, 2018(22): 46-52. http://arxiv.org/abs/1808.07456
|
[11] |
ZHANG Y, ZHOU D, CHEN S, et al. Single-image crowd counting via multi-column convolutional neural network[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2016: 98-103.
|
[12] |
WU X, ZHENG Y, YE H, et al. Adaptive scenario discovery for crowd counting[J]. Computer Vision and Pattern Recognition, 2019(9): 12-16. http://ieeexplore.ieee.org/document/8683744
|
[13] |
OORO-RUBIO D, LÓPEZ-SASTRE R J. Towards perspective-free object counting with deep learning[C]// European Conference on Computer Vision(ECCV) 2016. New York, USA: IEEE, 2016: 56-64.
|
[14] |
LEI H L. Crowd counting algorithm based on multi model deep convolution network fusion[D]. Hohhot: Inner Mongolia University, 2020: 32-37(in Chinese).
|
[15] |
TANG S Y, TAO Y, ZHANG L L, et al. A deep crowd counting algorithm based on multi-column feature map fusion. Journal of Zhengzhou University (Natural Science Edition), 2018, 50(2): 69-74(in Chinese).
|
[16] |
WANG Y J, ZHANG W, LIU Y Y, et al. Two-branch fusion network with attention map for crowd counting[J]. Neurocomputing, 2020, 411: 1-8. DOI: 10.1016/j.neucom.2020.06.034
|
[17] |
WANG S, LU Y, ZHOU T, et al. SCLNet: Spatial context learning network for congested crowd counting[J]. Neurocomputing, 2020, 404: 227-239. DOI: 10.1016/j.neucom.2020.04.139
|
[18] |
WU X, ZHENG Y, YE H, et al. Counting crowds with varying densities via adaptive scenario discovery framework[J]. Neurocomputing. 2020, 397: 127-138. DOI: 10.1016/j.neucom.2020.02.045
|
[19] |
LI Y, ZHANG X, CHEN D. CSRNet: Dilated convolutional neural networks for understanding the highly congested scenes[J]. Computer Vision and Pattern Recognition, 2018 (27): 31-39. http://ieeexplore.ieee.org/document/8578218
|
[20] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Computer Vision and Pattern Recognition, 2014(4): 19-25. http://arxiv.org/abs/1409.1556
|
[21] |
ZHANG C, LI H, WANG X, et al. Cross-scene crowd counting via deep convolutional neural networks[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2015: 17-29.
|
1. |
孙佳鑫,钱传鹏,徐作冬,张检民,叶锡生. 长波量子阱红外探测器激光辐照损伤脉宽效应数值模拟. 激光与光电子学进展. 2024(21): 290-297 .
![]() | |
2. |
胡蔚敏,王小军,田昌勇,杨晶,刘可,彭钦军. 脉宽对中红外激光带内损伤HgCdTe材料的影响. 强激光与粒子束. 2022(01): 130-137 .
![]() | |
3. |
王云萍,侯军燕,袁春,康文运,陈安民,张鲁薇. 飞秒激光对多光谱滤波片的损伤阈值研究. 激光技术. 2022(05): 697-701 .
![]() | |
4. |
李玉瑶,王菲,孙同同. 薄膜激光损伤阈值标定技术. 激光技术. 2021(06): 729-734 .
![]() | |
5. |
白凤凤,武桂芬. 光学薄膜激光损伤阈值的智能检测研究. 激光杂志. 2020(02): 171-175 .
![]() | |
6. |
周冰,贺宣,刘贺雄,李秉璇,张炎. 激光辐照非制冷微测辐射热计的理论研究. 激光技术. 2020(04): 411-417 .
![]() | |
7. |
任晓东,雷武虎,曾凌清,王勇. 基于相对运动的脉冲激光辐照探测器热效应数值分析. 光子学报. 2019(01): 105-111 .
![]() |