Citation: | LU Baohong, SONG Xuehua. Continuous pedestrian detection by means of regional convolutional neural network based on historical information[J]. LASER TECHNOLOGY, 2019, 43(5): 660-665. DOI: 10.7510/jgjs.issn.1001-3806.2019.05.014 |
[1] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. Lake Tahoe, Nevada, USA: Curran Associates Inc, 2012: 1097-1105.
|
[2] |
FENG W, WANG Y D, ZHANG L. Weighted joint dimensionality extraction and classification recognition algorithm [J]. Laser Technology, 2018, 42(5): 666-672(in Chinese).
|
[3] |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: Common objects in context[C]//European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014: 740-755.
|
[4] |
EVERINGHAM M, Van GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (voc) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338. DOI: 10.1007/s11263-009-0275-4
|
[5] |
RUSSAKOVSKY O, DENG J, SU H, et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. DOI: 10.1007/s11263-015-0816-y
|
[6] |
BENENSON R, OMRAN M, HOSANG J, et al. Ten years of pedestrian detection, what have we learned[C]//European Conference on Computer Vision. Zurich, Switzerland : Springer, 2014: 613-627.
|
[7] |
ZHANG S, BENENSON R, OMRAN M, et al. How far are we from solving pedestrian detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2016: 1259-1267.
|
[8] |
COSTEA A D, NEDEVSCHI S. Semantic channels for fast pedestrian detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2016: 2360-2368.
|
[9] |
HOSANG J, OMRAN M, BENENSON R, et al. Taking a deeper look at pedestrians[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2015: 4073-4082.
|
[10] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2014: 580-587.
|
[11] |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149. https://www.ncbi.nlm.nih.gov/pubmed/27295650
|
[12] |
ZHANG L, LIN L, LIANG X, et al. Is faster R-CNN doing well for pedestrian detection[C]//European Conference on computer Vision. Amsterdam, Netherlands: Springer, 2016: 443-457.
|
[13] |
ZHANG Sh Sh, BENENSON R, SCHIELE B. Citypersons: A diverse dataset for pedestrian detection[C]//The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2017: 3.
|
[14] |
LI J, LIANG X, SHEN S M, et al. Scale-aware fast R-CNN for pedestrian detection[J]. IEEE Transactions on Multimedia, 2018, 20(4): 985-996. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000001335067
|
[15] |
GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. New York, USA: IEEE, 2015: 1440-1448.
|
[16] |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-V4, inception-resnet and the impact of residual connections on learning[J].Computer Vison and Pattern Recognition, 2016, 23(2):07261. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000001372706
|
[17] |
DOLLÁR P, WOJEK C, SCHIELE B, et al. Pedestrian detection: A benchmark[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2009. New York, USA: IEEE, 2009: 304-311.
|
[18] |
GUADARRAMA S. Tensorflow-slim image classification model library[OL].(2018-07-05)[2018-12-31].https://github.com/tensorflow/models/tree/master/research/slim.
|
[19] |
UIJLINGS J R R, van de SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154-171. DOI: 10.1007/s11263-013-0620-5
|
[20] |
ZITNICK C L, DOLLÁR P. Edge boxes: Locating object proposals from edges[C]//European Conference on Computer Vision. Zurich, Switzerland : Springer, 2014: 391-405.
|
[21] |
KONG T, YAO A, CHEN Y, et al. Hypernet: Towards accurate region proposal generation and joint object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2016: 845-853.
|