Advanced Search
WANG Yuan, CHENG Xiaojin. Calibration and correction of afterpulse characteristics of a photomultiplier tube[J]. LASER TECHNOLOGY, 2021, 45(5): 607-613. DOI: 10.7510/jgjs.issn.1001-3806.2021.05.012
Citation: WANG Yuan, CHENG Xiaojin. Calibration and correction of afterpulse characteristics of a photomultiplier tube[J]. LASER TECHNOLOGY, 2021, 45(5): 607-613. DOI: 10.7510/jgjs.issn.1001-3806.2021.05.012

Calibration and correction of afterpulse characteristics of a photomultiplier tube

More Information
  • Received Date: October 18, 2020
  • Revised Date: November 29, 2020
  • Published Date: September 24, 2021
  • In order to accurately reflect the optical signals received by the lidar, it is necessary to correct and calibrate the afterpulse characteristics of the photomultiplier tube. The probability distribution function of the afterpulse was used to analyse and verify the sounding data of the airborne marine lidar with wavelength of 486nm and 532nm, respectively, and the corrected results were compared with the data obtained by Monte Carlo simulation. The results show that the correlation between the calibration data and the Monte Carlo simulation data is as high as 0.9689(486nm) and 0.8648(532nm), respectively. About 98m(486nm) and 33m(532nm) false signals are eliminated based on the corrected data compared with the data before, and the accuracy of measurement of the airborne marine lidar is improved effectively. This research is helpful for the measurement of ocean depth and the study of submarine geomorphy.
  • [1]
    HUANG Y, ZHAO J Y, WANG J D, et al. A real-time polarization compensation system over optical fibers based on wavelength division multiplexing[J]. Acta Optica Sinica, 2020, 40(14): 1406003(in Chinese). DOI: 10.3788/AOS202040.1406003
    [2]
    MA J P, SHANG J H, SUN J T, et al. Laser ranging system based on high speed pulse modulation and echo sampling[J]. Chinese Journal of Lasers, 2019, 46(8): 0810004(in Chinese). DOI: 10.3788/CJL201946.0810004
    [3]
    LIU Y X, FAN Q, LI X Y, et al. Realization of silicon single photon detector with ultra-low dark counting rate[J]. Acta Optica Sinica, 2020, 40(10): 1004001(in Chinese). DOI: 10.3788/AOS202040.1004001
    [4]
    SHANGGUAN M J. Laser remote sensing with 1.5μm single photon detectors[D]. Hefei: University of Science and Technology of China, 2017: 16-23(in Chinese).
    [5]
    LIU H X, ZHOU B, HE X, et al. Dual stochastic detection process for APD receiving laser in turbulent atmosphere[J]. Laser Technology, 2019, 43(4): 471-475(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201904007.htm
    [6]
    CHEN Ch. Study on the characteristics and application of the photomultiplier tubes[J]. Digital Communication World, 2018, 163(7): 144-145(in Chinese).
    [7]
    LV D L, HE Y, YU J Y, et al. Research of error analysis and positioning accuracy of airborne dual-frequency LIDAR[J]. Laser & Opto-electronics Progress, 2018, 55(8): 082806(in Chinese).
    [8]
    WANG X, PAN Zh H, LUO Sh, et al. Bathymetric technology and research status of airborne lidar[J]. Hydrographic Surveying and Charting, 2019, 39(5): 78-82(in Chinese).
    [9]
    HU Sh J, HE Y, ZANG G H, et al. A new airborne laser bathymetry system and survey result[J]. Chinese Journal of Lasers, 2006, 33(9): 1163-1167(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JJZZ200609002.htm
    [10]
    PETTIFER R E W. Signal induced noise in lidar experiments[J]. Journal of Atmospheric & Terrestrial Physics, 1975, 37(4): 669-673. http://www.sciencedirect.com/science/article/pii/0021916975900628
    [11]
    ZHANG Y P, FAN Y I, WEI K, et al. Analysis of relative error in detection caused by signal-induced noise in Na lidar system[J]. Science China(Earth Sciences Edition), 2018, 61(1): 109-118.
    [12]
    CAMPBELL L. Afterpulse measurement and correction[J]. Review of Scientific Instruments, 1992, 63(12): 5794-5798. DOI: 10.1063/1.1143365
    [13]
    WILLIAMSON C K, de YOUNG R J. Method for the reduction of signal-induced noise in photomultiplier tubes[J]. Applied Optics, 2000, 39(12): 1973-1979. DOI: 10.1364/AO.39.001973
    [14]
    LI Q H, CHEN L Y, CHEN F, et al. Airborne blue-green laser ocean sounding[J]. Acta Photonica Sinica, 1996, 25(11): 1008-1015(in Chinese).
    [15]
    DAI Y J. Laser radar technique[M]. Beijing: Publishing House of Electronic Industry, 2010: 173(in Chinese).
    [16]
    WANG L. Characteristic analysis of signal-induced noise of photomultiplier[D]. Beijing: University of Chinese Academy of Science, 2019: 13-14(in Chinese).
    [17]
    LIN J Ch, MIAO Y, YAN H, et al. Research on a new type of linear piecewise interpolation[J]. Journal of Hefei Institute of Education, 1999, 16(4): 3-5(in Chinese).
    [18]
    WALKER R E, McLEAN J W. Lidar equations for turbid media with pulse stretching[J]. Applied Optics, 1999, 38(12): 2384-2397. DOI: 10.1364/AO.38.002384
    [19]
    HU S Q. Study of high speed and high-sensitivity blue-green laser communication technology[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2018: 15-40(in Chinese).
    [20]
    LIU M G. Research on airborne dual-frequency lidar waveform depth extract technology[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2018: 24-49(in Chinese).
    [21]
    WANG A L. Statistics[M]. Xi'an: Xi'an Jiaotong University Press, 2010: 213-218(in Chinese).
  • Related Articles

    [1]JIAN Yuan, HUANG Zili, WANG Xun. Infrared small target detection based on randomized tensor algorithm[J]. LASER TECHNOLOGY, 2024, 48(1): 127-134. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.020
    [2]CAI Xuming, LI Xiao, LIU Yuxian, HE Chunhua, LIN Junjie. Laser spot center location algorithm based on gray histogram[J]. LASER TECHNOLOGY, 2023, 47(2): 273-279. DOI: 10.7510/jgjs.issn.1001-3806.2023.02.018
    [3]XIE Shanshan, WANG Zheqiang, HUANG He, CHEN Baobao, WANG Pei, LI Jingsong. Applications of random sample consistency algorithm on laser spectroscopy[J]. LASER TECHNOLOGY, 2017, 41(1): 133-137. DOI: 10.7510/jgjs.issn.1001-3806.2017.01.027
    [4]RONG Wei, WANG Yuzhao. Study on detection algorithms of cloud/aerosol layers based on histogram statistics[J]. LASER TECHNOLOGY, 2015, 39(6): 820-823. DOI: 10.7510/jgjs.issn.1001-3806.2015.06.019
    [5]WANG Yuanqing, HE Ju, MA Yong, YU Yin, ZHANG Nian, LIANG Kun. Effect of random noise on oceanic Brillouin lidar measurement[J]. LASER TECHNOLOGY, 2015, 39(1): 6-12. DOI: 10.7510/jgjs.issn.1001-3806.2015.01.002
    [6]LIN Chao, SHEN Xueju, DU Shuang, GUO Yaoyang, HU Shen. Characteristic analysis of encryption and decryption in random polarization optical encryption algorithm[J]. LASER TECHNOLOGY, 2014, 38(4): 515-521. DOI: 10.7510/jgjs.issn.1001-3806.2014.04.016
    [7]FENG Jun-bo, ZHOU Xin. Random phase encoding achievement of color images under spotlight illumination[J]. LASER TECHNOLOGY, 2008, 32(6): 621-623.
    [8]SHEN Yang, CHEN Wen-jing. Influence of sampling on composite Fourier-transform propfilometry[J]. LASER TECHNOLOGY, 2008, 32(1): 80-83,87.
    [9]Chen Houdao, Zhou Gang, Wang Congjun, Huang Shuhuai. An algorithm for laser stripe matching based on the epipolar constraint[J]. LASER TECHNOLOGY, 2003, 27(6): 584-587.
    [10]Xiao Jun, Zhang Bing, . Study on far-field spots of random phased laser[J]. LASER TECHNOLOGY, 1999, 23(2): 99-104.
  • Cited by

    Periodical cited type(3)

    1. 龚皓, 干彬. 基于大数据分析技术的激光三维图像重构研究. 激光杂志. 2019(06): 83-87 .
    2. 韩媞. 低对比度全景球面图像目标分割方法. 科学技术与工程. 2017(14): 234-238 .
    3. 王淑青, 朱道利, 潘健, 李叶伟, 刘天俊, 李维, 要若天. 一种改进的Otsu红外林火图像提取方法研究. 激光杂志. 2016(10): 99-101 .

    Other cited types(4)

Catalog

    Article views (6) PDF downloads (7) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return