Advanced Search
FANG Ziqiu, CHEN Guoqing, WU Yamin. Study on time-resolved fluorescence spectroscopy of ethyl acetate solution[J]. LASER TECHNOLOGY, 2020, 44(2): 206-211. DOI: 10.7510/jgjs.issn.1001-3806.2020.02.012
Citation: FANG Ziqiu, CHEN Guoqing, WU Yamin. Study on time-resolved fluorescence spectroscopy of ethyl acetate solution[J]. LASER TECHNOLOGY, 2020, 44(2): 206-211. DOI: 10.7510/jgjs.issn.1001-3806.2020.02.012

Study on time-resolved fluorescence spectroscopy of ethyl acetate solution

More Information
  • Received Date: March 31, 2019
  • Revised Date: April 23, 2019
  • Published Date: March 24, 2020
  • In order to study effect of fluorescence decay of ethyl acetate in the simulated liquor environment, the steady-state and time-resolved fluorescence spectra of ethyl acetate ethanol aqueous solution with different volume fractions were measured. Combined with quantum chemical calculation, experimental measurements and theoretical analysis were carried out. The results show that, for ethyl and acetate, there are two fluorescence peaks at 407nm and 431nm, respectively. Fluorescence lifetime is about 1.4ns. There are two fluorescence lifetimes in the decay process of ethyl acetate ethanol aqueous solution with different volume fractions. The short-life component is ethyl acetate. The long-life component is polymer structure formed by ethyl acetate, ethanol and water molecules. Intermolecular interaction in the structure of the polymer improves the planarity of ethyl acetate. This is conducive to radiation transition. Water molecules connect ethyl acetate and ethanol through hydrogen bonds and van der Waals forces to form layered structures, block the movement of the fluorescent body, reduce non-radiative transitions, and prolong fluorescence lifetime. This result is helpful to enrich the detection methods of organic compounds in liquor. It is also helpful to study the changes of molecular conformation and spectral characteristics in solvent environment.
  • [1]
    GOTOVTSEVA E, BIRYUKOV A, SVETLICHNYI V. Stability and spectral-luminescence properties of CdS and ZnS nanoparticle dispersions, synthesized in various solvents[J]. Russian Physics Journal, 2013, 56(3): 273-279. DOI: 10.1007/s11182-013-0027-3
    [2]
    YAN H G, ZHAO H R, HU J, et al. Determination of phenanthrenes and stilbenoid in the ethyl acetate extract of Thunia alba (Lindl) by HPLC-DAD[J]. Analytical Methods, 2016(24): 4867-4871. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b8eab94c2045731d51cb273490f57a9a
    [3]
    DUAN H X, LUO W Y, YANG Y S, et al. Chemical constituents in ethyl acetate fraction of artemisia selengensis[J]. Chinese Traditional & Herbal Drugs, 2015, 46(10): 1441-1444. http://d.old.wanfangdata.com.cn/Periodical/zcy201510007
    [4]
    YANG B, HAN B, HUANG P, et al. Chemical constituents from ethyl acetate extracts of Botrychium ternatum[J]. Chinese Traditional & Herbal Drugs, 2017, 48(5): 884-887. http://d.old.wanfangdata.com.cn/Periodical/zcy201705007
    [5]
    LIU D F, DU W M, ZHOU H T, et al. Ethyl acetate synthesis on-line measurement by raman spectroscopy[J]. Spectroscopy and Spectral Analysis, 2001, 21(3): 301-303(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx200103012
    [6]
    TAN Ch, WU T, LI W Y, et al. Determination of ethyl acetate in liquor based on combination of near-infrared spectroscopy interval partial least squares[J]. Computers and Applied Chemistry, 2014, 31(4): 510-512(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjyyyhx201404027
    [7]
    FENG J Q, ZHANG Y S, WEI X J. Analysis of flavoring compositions for DuKang wine by GC-MS[J]. Chinese Journal of Spectroscopy Laboratory, 2013, 30(2): 847-849(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpsys201302078
    [8]
    SUN Z B, XIN X, ZOU X B, et al. Rapid qualitative and quantitative analysis of base liquor using FTIR combined with chemometrics[J]. Spectroscopy and Spectral Analysis, 2017, 37(9): 2756-2762(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201709018
    [9]
    KOLLING O W, ORLAND W. FTIR study of the solvent influence on the carbonyl absorption peak of ethyl acetate[J]. The Journal of Physical Chemistry, 1992, 96(15): 6217-6220. DOI: 10.1021/j100194a025
    [10]
    SONG X Sh, CHEN G Q, ZHU Zh W, et al. Determination of volume fraction of acetic acid in Chinese aged liquor by 3-D fluorescence spectrometry[J]. Laser Technology, 2018, 42(4): 531-535(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201804018
    [11]
    STEPHENS P J, DEVLIN F J, CHABALOWSKI C F. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. The Journal of Physical Chemistry, 1994, 98(45): 11623-11627. DOI: 10.1021/j100096a001
    [12]
    LU T, CHEN F W. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. DOI: 10.1002/jcc.22885
    [13]
    HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38. DOI: 10.1016/0263-7855(96)00018-5
    [14]
    LU T, CHEN F W. Quantitative analysis of molecular surface based on improved marching tetrahedra algorithm[J]. Journal of Molecular Graphics and Modeling, 2012, 38: 314-323. DOI: 10.1016/j.jmgm.2012.07.004
    [15]
    JOHNSON E R, KEINAN S, MORI-SANCHEZ P, et al. Revealing noncovalent interactions[J]. Journal of the American Chemical Society, 2010, 132(18): 6498-6506. DOI: 10.1021/ja100936w
    [16]
    WU Ch Ch, de VISSCHER A, GATES I D. Molecular interactions between 1-butyl-3-methylimidazolium tetrafluoroborate and model naphthenic acids: A DFT study[J]. Journal of Molecular Liquids, 2017, 243: 462-471. DOI: 10.1016/j.molliq.2017.08.061
    [17]
    SÁNCHEZ-SANZ G, CROWE D, NICHOLSON A, et al. Conformational studies of gram-negative bacterial quorum sensing acyl homoserine lactone (AHL) molecules: The importance of the n→π* interaction[J]. Biophysical Chemistry, 2018, 238: 16-21. DOI: 10.1016/j.bpc.2018.04.002
    [18]
    TANIGUCHI T, NAKANO K, BABA R, et al. Analysis of configuration and conformation of furanose ring in carbohydrate and nucleoside by vibrational circular dichroism[J]. Organic Letters, 2017, 19(2): 404-407. DOI: 10.1021/acs.orglett.6b03626
    [19]
    SÁNCHEZ-SANZ G, ALKORTA I, ELGUERO J. Theoretical study of intramolecular interactions in peri-substituted naphthalenes: Chalcogen and hydrogen bonds[J]. Molecules, 2017, 22(2):227-243. DOI: 10.3390/molecules22020227
    [20]
    ESRAFILI M D, SADR-MOUSAVI A. Modulating of the pnicogen-bonding by a H…π interaction: Investigation of substituent, cooperativity and solvent effects[J]. Journal of Molecular Graphics and Modelling, 2017, 75: 165-173. DOI: 10.1016/j.jmgm.2017.04.017
  • Related Articles

    [1]WANG Guoyu, CHEN Guoqing, GUO Senqi, WEI Yitao, WANG Zirui, LI Xiaolin. Determination of the age of aged Baijiu based on 3-D fluorescence spectroscopy[J]. LASER TECHNOLOGY, 2023, 47(2): 286-292. DOI: 10.7510/jgjs.issn.1001-3806.2023.02.020
    [2]LIU Muhan, CHEN Guoqing, XIAO Rongyang, XU Yujie, CHEN Zhehan, CAI Jiyuan. Classification of milk beverages based on 3-D fluorescence spectroscopy[J]. LASER TECHNOLOGY, 2021, 45(3): 303-306. DOI: 10.7510/jgjs.issn.1001-3806.2021.03.006
    [3]SONG Xinshu, CHEN Guoqing, ZHU Zhuowei, MA Chaoqun, ZHU Chun, ZHANG Xiaohe, LIU Huaibo, ZHU Conghai. Determination of volume fraction of acetic acid in Chinese aged liquor by 3-D fluorescence spectrometry[J]. LASER TECHNOLOGY, 2018, 42(4): 531-535. DOI: 10.7510/jgjs.issn.1001-3806.2018.04.018
    [4]YU Wenfang, HUANG Zuohua, ZHOU Jinzhao, LI Huaxin. Measurement of the refractive indexes of glacial acetic acid and alcohol by means of total reflection[J]. LASER TECHNOLOGY, 2014, 38(2): 161-164. DOI: 10.7510/jgjs.issn.1001-3806.2014.02.004
    [5]WEI Bai-lin, CHEN Guo-qing, XU Jiang-cai, YAN Guan-feng, MA Chao-qun, ZHU Tuo, GAO Shu-mei. Recognition of alcohol-free beer by fluorescent spectroscopy and probabilistic neural network[J]. LASER TECHNOLOGY, 2010, 34(6): 794-797. DOI: 10.3969/j.issn.1001-3806.2010.06.020
    [6]HAN Cai-qin, LIU Ying, WU Bin, YANG Yang, LUO Xiao-sen, NI Xiao-wu. Analysis of acetic acid-water solution structure characteristics by fluorescence parameters[J]. LASER TECHNOLOGY, 2010, 34(5): 640-642,646. DOI: 10.3969/j.issn.1001-3806.2010.O5.017
    [7]BI Lin-na, CHEN Guo-qing, WANG Jun, YAN Hao-ran. Fluorescence spectra of methyl parathion and its characteristic[J]. LASER TECHNOLOGY, 2010, 34(2): 253-257. DOI: 10.3969/j.issn.1001-3806.2010.02.030
    [8]LU Jun, GAO Shu-mei, XIONG Jie, YANG You-yi, CHEN Guo-qing. Characteristics and mechanism for fluorescence spectroscopy of female urine[J]. LASER TECHNOLOGY, 2010, 34(1): 45-47,84. DOI: 10.3969/j.issn.1001-3806.2010.01.013
    [9]WANG Kun, ZHANG Xin-zheng, WANG Zhen-hua, TANG Li-qin, WU Qiang, XU Jing-jun. Enhancement of SNR and precision in measurement of time resolved fluorescence spectra[J]. LASER TECHNOLOGY, 2005, 29(2): 126-129.
    [10]Liu Ying, Lan Xiufeng, Gao Shume, Shen Zhonghua, Lu Jian, Ni Xiaowu. Research of the mechanism of acetic acid fluorescence quenching[J]. LASER TECHNOLOGY, 2003, 27(6): 538-540,562.

Catalog

    Article views (8) PDF downloads (8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return