Advanced Search
LU Jing, LUO Bin. Analysis of equivalent reflectivity of vertical-cavity semiconductor optical amplifiers[J]. LASER TECHNOLOGY, 2019, 43(2): 174-178. DOI: 10.7510/jgjs.issn.1001-3806.2019.02.005
Citation: LU Jing, LUO Bin. Analysis of equivalent reflectivity of vertical-cavity semiconductor optical amplifiers[J]. LASER TECHNOLOGY, 2019, 43(2): 174-178. DOI: 10.7510/jgjs.issn.1001-3806.2019.02.005

Analysis of equivalent reflectivity of vertical-cavity semiconductor optical amplifiers

More Information
  • Received Date: May 09, 2018
  • Revised Date: July 22, 2018
  • Published Date: March 24, 2019
  • In order to optimize the performance of vertical cavity semiconductor optical amplifiers (VCSOA) in different applications and obtain accurate reflectivity with the general calculation method, considering the characteristics of light field distribution inside the device, the equivalent reflectivity of the distributed Bragg reflector (DBR) and the full width at half maximum of the beam in the device were obtained by using angular spectrum theory and transmission matrix method.The theoretical analysis and experimental verification were carried out.The results show that the equivalent reflectivity increases with the increase of structure period.However, when the period is greater than 25, it will not change any more.Compared with the case of normal incidence only, the revised equivalent reflectivity of DBR is less 2%~4%.Equivalent reflectance decreases with the increase of full width at half maximum θFWHM.The study provides theoretical guidance for accurately calculating the effect of stack number on equivalent reflectivity of DBR and optimizing the performance of VCSOA.
  • [1]
    SAHRAEE E, ZARIFKAR A, SANAEE M. Improvement of gain recovery in QD-VCSOA at 1Tb/s cross gain modulation using an additional light beam[J]. IEEE Journal of Quantum Electronics, 2014, 50(10):1-7. https://ieeexplore.ieee.org/document/6873215
    [2]
    QASAIMENH O. Novel tunable bistable quantum-dot vertical-cavity semiconductor optical amplifier[J]. IEEE Photonics Technology Le-tters, 2016, 28(14):1553-1556. DOI: 10.1109/LPT.2016.2558520
    [3]
    PIPREK J, BJǒRLIN E S, BOWERS J E. Design and analysis of vertical-cavity semiconductor optical amplifiers[J]. IEEE Journal of Quantum Electronics, 2008, 37(1):127-134. http://cn.bing.com/academic/profile?id=65b50c9bb6ca6c513f63dced35e82955&encoded=0&v=paper_preview&mkt=zh-cn
    [4]
    QASAIMENH O. Simple semi-analytical model for bistable cross-gain modulationg in quantum dot VCSOAs[J]. Optical & Quantum Electronics, 2017, 49(9):309. DOI: 10.1007%2Fs11082-017-1149-6
    [5]
    ADAMS M J, COLLINS J V, HENNING I D. Analysis of semiconductor laser optical amplifiers[J]. IEEE Proeecdings, 2000, 132(1):58-63. http://cn.bing.com/academic/profile?id=bcc16e11670a4a557423df07f5967b1e&encoded=0&v=paper_preview&mkt=zh-cn
    [6]
    IGA K. Vertical-cavity surface-emitting laser:Its conception and evolution[J]. Japanese Journal of Applied Physics, 2008, 47(1):1-10. DOI: 10.1143/JJAP.47.1
    [7]
    SAHRAEE E, ZARIKAR A. MEMS-based tuning of InGaAs/GaAs quantum dot-VCSOA[J]. IEEE Journal of Quantum Electronics, 2015, 51(5):1-10. http://cn.bing.com/academic/profile?id=f49beae3acb06890b48f21b237e21e5e&encoded=0&v=paper_preview&mkt=zh-cn
    [8]
    QASAIMENH O. Cross-gain modulation in bistable quantum-dot VCSOAs[J]. IEEE Photonics Technology Letters, 2017, 29(3):342-345. DOI: 10.1109/LPT.2016.2647591
    [9]
    LI B Zh, ZOU Y G. Tunable vertical cavity surface emitting lasers[J]. Laser Technology, 2018, 42(4):556-561(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb200708041
    [10]
    MA Y N, LUO B, PAN W, et al. Improvement of slow light performance for vertical-cavity surface-emitting laser using coupled cavity structure[J]. Optoelectronics Letters, 2012, 8(6):0405-0408. DOI: 10.1007/s11801-012-2302-x
    [11]
    LU J, LUO B, ZHOU G, et al. Analysis of tune output property of vertical-cavity semiconductor optical amplifiiers[J]. Laser Techno-logy, 2011, 35(2):260-263(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201102033.htm
    [12]
    QIN Zh M, LUO B, PAN W. Theoretical analysis of the gain of vertical cavity semiconductor optical amplifier[J]. Laser Technology, 2006, 30(5):452-454(in chinese). http://www.jgjs.net.cn/CN/abstract/abstract14641.shtml
    [13]
    ZHANG W L, YU S F. Bistabilities of birefringent vertical-cavity semiconductor optical amplifiers with antiresonant reflecting optical waveguide[J]. IEEE Journal of Quantum Electronics, 2010, 46(1):11-18. DOI: 10.1109/JQE.2009.2022651
    [14]
    ZHANG Y, GUAN B O, TAM H Y. Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement[J]. Optics Communications, 2008, 281(18):4619-4622. DOI: 10.1016/j.optcom.2008.05.039
    [15]
    MA Y N, LUO B, PAN W, et al. Capability limitatioin for slow light using vertical-cavity surface-emitting laser amplifier[J]. IEEE Photonics Technology Letters, 2013, 25(10):903-906. DOI: 10.1109/LPT.2013.2253546
    [16]
    BJÖRLINS, RIOU B, KEATING A, et al. 1.3μm vertical-cavity amplifier[J]. IEEE Photonics Technology Letters, 2000, 12(8):951-953. DOI: 10.1109/68.867971
    [17]
    ZHANG C Sh, ZHANG Y Sh, DU A F, et al. Analysis of reflectance characteristics of DBR in vertical cavity surface emitting lasers[J]. Journal of Optoelectronics·Laser, 2002, 13(1):34-36(in Chinese). http://cn.bing.com/academic/profile?id=167afbd3c5538fd5989c6f45d307c9da&encoded=0&v=paper_preview&mkt=zh-cn
    [18]
    GAI H X, GUO X, DENG J, et al.Study of the optical characteristic of the vertical surface emitting laser using optical thin_film model[J]. Optical Technique, 2005, 31(6):904-909(in Chinese)
    [19]
    DIAS N L, REDDY U, GARG A, et al.Wide stripe distributed bragg grating lasers with very narrow spectral linewidth[J]. IEEE Journal of Quantum Electronics, 2014, 47(3):293-299. http://cn.bing.com/academic/profile?id=55211a758c2292a80d310a2be29c0baf&encoded=0&v=paper_preview&mkt=zh-cn
    [20]
    ZIMMERMAN J W, PRICE R K, REEDY U, et al. Narrow linewidth surface-etched DBR laser:Fundamental design aspects and applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 19(4):1503712. https://ieeexplore.ieee.org/document/6516938
  • Related Articles

    [1]BI Shaoping, WANG Sheng, ZHANG Enming, CHEN Cong, CHEN Xiguo. Optimization of process parameters for laser cladding 316 L on gray iron surface based on GA[J]. LASER TECHNOLOGY, 2024, 48(5): 759-764. DOI: 10.7510/jgjs.issn.1001-3806.2024.05.022
    [2]GONG Deyu, LI Liucheng, LI Baozeng, DUO Liping, WANG Yuanhu, MA Yanhua, ZHANG Zhiguo, JIN Yuqi. NH3 measurement based on cavity enhanced absorption spectroscopy[J]. LASER TECHNOLOGY, 2017, 41(5): 664-668. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.009
    [3]QIAN Xiaozhong, WANG Qiqi, REN Naifei. Optimization of laser drilling processing parameters for SUS304 based on orthogonal experiments[J]. LASER TECHNOLOGY, 2017, 41(4): 578-581. DOI: 10.7510/jgjs.issn.1001-3806.2017.04.024
    [4]TANG Xiao-dan, YAO Jian-hua, KONG Fan-zhi, ZHANG Qun-li. Manufacture and microstructure performance of H13-TiC gradient composite coating made by laser cladding[J]. LASER TECHNOLOGY, 2010, 34(3): 326-330,334. DOI: 10.3969/j.issn.1001-3806.2010.03.012
    [5]SUN Yue-qing, ZHOU Jian-zhong, LIANG Qing-lei, CHEN Yi-bin, HUANG Shu. Optimization of laser peening parameters using Taguchi method[J]. LASER TECHNOLOGY, 2008, 32(4): 377-379,386.
    [6]Li Yuhong. Research of metal-ceramic TiC-B4C-SiC-Co laser cladding on A3 steel[J]. LASER TECHNOLOGY, 2003, 27(5): 396-397,399.
    [7]Li Qiang, Zhang Bin, Cai Bangwei. Optimum parameters for tripler under amplitude modulation and phase perturbation[J]. LASER TECHNOLOGY, 2003, 27(3): 262-264.
    [8]Li Jian, Bai Xiaodong, Shen Naicheng, Zang Erjun, Cao Jianping. The parameters optimization of Doppler-broadened iodine at 532nm Nd:YVO4 laser frequency stabilization[J]. LASER TECHNOLOGY, 2003, 27(1): 50-52.
    [9]Li Yuhong, Zhang Siyu, Zheng Kequan. B4C-TiN-Co surface microstructure and performance of A3 steel by laser cladding at different scanning speed[J]. LASER TECHNOLOGY, 1999, 23(2): 126-128.
    [10]Huang Feiran, Wei Zhiyi, Yang Jie, Yu Zhenxin. Investigation of dispersion compensation in self mode lockd Ti:Al2O3 lasers[J]. LASER TECHNOLOGY, 1997, 21(2): 96-100.

Catalog

    Article views (3) PDF downloads (7) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return