[1]
|
SAHRAEE E, ZARIFKAR A, SANAEE M. Improvement of gain recovery in QD-VCSOA at 1Tb/s cross gain modulation using an additional light beam[J]. IEEE Journal of Quantum Electronics, 2014, 50(10):1-7. |
[2]
|
QASAIMENH O. Novel tunable bistable quantum-dot vertical-cavity semiconductor optical amplifier[J]. IEEE Photonics Technology Le-tters, 2016, 28(14):1553-1556. doi: 10.1109/LPT.2016.2558520 |
[3]
|
PIPREK J, BJǒRLIN E S, BOWERS J E. Design and analysis of vertical-cavity semiconductor optical amplifiers[J]. IEEE Journal of Quantum Electronics, 2008, 37(1):127-134. |
[4]
|
QASAIMENH O. Simple semi-analytical model for bistable cross-gain modulationg in quantum dot VCSOAs[J]. Optical & Quantum Electronics, 2017, 49(9):309. |
[5]
|
ADAMS M J, COLLINS J V, HENNING I D. Analysis of semiconductor laser optical amplifiers[J]. IEEE Proeecdings, 2000, 132(1):58-63. |
[6]
|
IGA K. Vertical-cavity surface-emitting laser:Its conception and evolution[J]. Japanese Journal of Applied Physics, 2008, 47(1):1-10. doi: 10.1143/JJAP.47.1 |
[7]
|
SAHRAEE E, ZARIKAR A. MEMS-based tuning of InGaAs/GaAs quantum dot-VCSOA[J]. IEEE Journal of Quantum Electronics, 2015, 51(5):1-10. |
[8]
|
QASAIMENH O. Cross-gain modulation in bistable quantum-dot VCSOAs[J]. IEEE Photonics Technology Letters, 2017, 29(3):342-345. doi: 10.1109/LPT.2016.2647591 |
[9]
|
LI B Zh, ZOU Y G. Tunable vertical cavity surface emitting lasers[J]. Laser Technology, 2018, 42(4):556-561(in Chinese). |
[10]
|
MA Y N, LUO B, PAN W, et al. Improvement of slow light performance for vertical-cavity surface-emitting laser using coupled cavity structure[J]. Optoelectronics Letters, 2012, 8(6):0405-0408. doi: 10.1007/s11801-012-2302-x |
[11]
|
LU J, LUO B, ZHOU G, et al. Analysis of tune output property of vertical-cavity semiconductor optical amplifiiers[J]. Laser Techno-logy, 2011, 35(2):260-263(in Chinese). |
[12]
|
QIN Zh M, LUO B, PAN W. Theoretical analysis of the gain of vertical cavity semiconductor optical amplifier[J]. Laser Technology, 2006, 30(5):452-454(in chinese). |
[13]
|
ZHANG W L, YU S F. Bistabilities of birefringent vertical-cavity semiconductor optical amplifiers with antiresonant reflecting optical waveguide[J]. IEEE Journal of Quantum Electronics, 2010, 46(1):11-18. doi: 10.1109/JQE.2009.2022651 |
[14]
|
ZHANG Y, GUAN B O, TAM H Y. Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement[J]. Optics Communications, 2008, 281(18):4619-4622. doi: 10.1016/j.optcom.2008.05.039 |
[15]
|
MA Y N, LUO B, PAN W, et al. Capability limitatioin for slow light using vertical-cavity surface-emitting laser amplifier[J]. IEEE Photonics Technology Letters, 2013, 25(10):903-906. doi: 10.1109/LPT.2013.2253546 |
[16]
|
BJÖRLINS, RIOU B, KEATING A, et al. 1.3μm vertical-cavity amplifier[J]. IEEE Photonics Technology Letters, 2000, 12(8):951-953. doi: 10.1109/68.867971 |
[17]
|
ZHANG C Sh, ZHANG Y Sh, DU A F, et al. Analysis of reflectance characteristics of DBR in vertical cavity surface emitting lasers[J]. Journal of Optoelectronics·Laser, 2002, 13(1):34-36(in Chinese). |
[18]
|
GAI H X, GUO X, DENG J, et al.Study of the optical characteristic of the vertical surface emitting laser using optical thin_film model[J]. Optical Technique, 2005, 31(6):904-909(in Chinese) |
[19]
|
DIAS N L, REDDY U, GARG A, et al.Wide stripe distributed bragg grating lasers with very narrow spectral linewidth[J]. IEEE Journal of Quantum Electronics, 2014, 47(3):293-299. |
[20]
|
ZIMMERMAN J W, PRICE R K, REEDY U, et al. Narrow linewidth surface-etched DBR laser:Fundamental design aspects and applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 19(4):1503712. |