Citation: | LU Jing, LUO Bin. Analysis of equivalent reflectivity of vertical-cavity semiconductor optical amplifiers[J]. LASER TECHNOLOGY, 2019, 43(2): 174-178. DOI: 10.7510/jgjs.issn.1001-3806.2019.02.005 |
[1] |
SAHRAEE E, ZARIFKAR A, SANAEE M. Improvement of gain recovery in QD-VCSOA at 1Tb/s cross gain modulation using an additional light beam[J]. IEEE Journal of Quantum Electronics, 2014, 50(10):1-7. https://ieeexplore.ieee.org/document/6873215
|
[2] |
QASAIMENH O. Novel tunable bistable quantum-dot vertical-cavity semiconductor optical amplifier[J]. IEEE Photonics Technology Le-tters, 2016, 28(14):1553-1556. DOI: 10.1109/LPT.2016.2558520
|
[3] |
PIPREK J, BJǒRLIN E S, BOWERS J E. Design and analysis of vertical-cavity semiconductor optical amplifiers[J]. IEEE Journal of Quantum Electronics, 2008, 37(1):127-134. http://cn.bing.com/academic/profile?id=65b50c9bb6ca6c513f63dced35e82955&encoded=0&v=paper_preview&mkt=zh-cn
|
[4] |
QASAIMENH O. Simple semi-analytical model for bistable cross-gain modulationg in quantum dot VCSOAs[J]. Optical & Quantum Electronics, 2017, 49(9):309. DOI: 10.1007%2Fs11082-017-1149-6
|
[5] |
ADAMS M J, COLLINS J V, HENNING I D. Analysis of semiconductor laser optical amplifiers[J]. IEEE Proeecdings, 2000, 132(1):58-63. http://cn.bing.com/academic/profile?id=bcc16e11670a4a557423df07f5967b1e&encoded=0&v=paper_preview&mkt=zh-cn
|
[6] |
IGA K. Vertical-cavity surface-emitting laser:Its conception and evolution[J]. Japanese Journal of Applied Physics, 2008, 47(1):1-10. DOI: 10.1143/JJAP.47.1
|
[7] |
SAHRAEE E, ZARIKAR A. MEMS-based tuning of InGaAs/GaAs quantum dot-VCSOA[J]. IEEE Journal of Quantum Electronics, 2015, 51(5):1-10. http://cn.bing.com/academic/profile?id=f49beae3acb06890b48f21b237e21e5e&encoded=0&v=paper_preview&mkt=zh-cn
|
[8] |
QASAIMENH O. Cross-gain modulation in bistable quantum-dot VCSOAs[J]. IEEE Photonics Technology Letters, 2017, 29(3):342-345. DOI: 10.1109/LPT.2016.2647591
|
[9] |
LI B Zh, ZOU Y G. Tunable vertical cavity surface emitting lasers[J]. Laser Technology, 2018, 42(4):556-561(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb200708041
|
[10] |
MA Y N, LUO B, PAN W, et al. Improvement of slow light performance for vertical-cavity surface-emitting laser using coupled cavity structure[J]. Optoelectronics Letters, 2012, 8(6):0405-0408. DOI: 10.1007/s11801-012-2302-x
|
[11] |
LU J, LUO B, ZHOU G, et al. Analysis of tune output property of vertical-cavity semiconductor optical amplifiiers[J]. Laser Techno-logy, 2011, 35(2):260-263(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201102033.htm
|
[12] |
QIN Zh M, LUO B, PAN W. Theoretical analysis of the gain of vertical cavity semiconductor optical amplifier[J]. Laser Technology, 2006, 30(5):452-454(in chinese). http://www.jgjs.net.cn/CN/abstract/abstract14641.shtml
|
[13] |
ZHANG W L, YU S F. Bistabilities of birefringent vertical-cavity semiconductor optical amplifiers with antiresonant reflecting optical waveguide[J]. IEEE Journal of Quantum Electronics, 2010, 46(1):11-18. DOI: 10.1109/JQE.2009.2022651
|
[14] |
ZHANG Y, GUAN B O, TAM H Y. Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement[J]. Optics Communications, 2008, 281(18):4619-4622. DOI: 10.1016/j.optcom.2008.05.039
|
[15] |
MA Y N, LUO B, PAN W, et al. Capability limitatioin for slow light using vertical-cavity surface-emitting laser amplifier[J]. IEEE Photonics Technology Letters, 2013, 25(10):903-906. DOI: 10.1109/LPT.2013.2253546
|
[16] |
BJÖRLINS, RIOU B, KEATING A, et al. 1.3μm vertical-cavity amplifier[J]. IEEE Photonics Technology Letters, 2000, 12(8):951-953. DOI: 10.1109/68.867971
|
[17] |
ZHANG C Sh, ZHANG Y Sh, DU A F, et al. Analysis of reflectance characteristics of DBR in vertical cavity surface emitting lasers[J]. Journal of Optoelectronics·Laser, 2002, 13(1):34-36(in Chinese). http://cn.bing.com/academic/profile?id=167afbd3c5538fd5989c6f45d307c9da&encoded=0&v=paper_preview&mkt=zh-cn
|
[18] |
GAI H X, GUO X, DENG J, et al.Study of the optical characteristic of the vertical surface emitting laser using optical thin_film model[J]. Optical Technique, 2005, 31(6):904-909(in Chinese)
|
[19] |
DIAS N L, REDDY U, GARG A, et al.Wide stripe distributed bragg grating lasers with very narrow spectral linewidth[J]. IEEE Journal of Quantum Electronics, 2014, 47(3):293-299. http://cn.bing.com/academic/profile?id=55211a758c2292a80d310a2be29c0baf&encoded=0&v=paper_preview&mkt=zh-cn
|
[20] |
ZIMMERMAN J W, PRICE R K, REEDY U, et al. Narrow linewidth surface-etched DBR laser:Fundamental design aspects and applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 19(4):1503712. https://ieeexplore.ieee.org/document/6516938
|
[1] | BI Shaoping, WANG Sheng, ZHANG Enming, CHEN Cong, CHEN Xiguo. Optimization of process parameters for laser cladding 316 L on gray iron surface based on GA[J]. LASER TECHNOLOGY, 2024, 48(5): 759-764. DOI: 10.7510/jgjs.issn.1001-3806.2024.05.022 |
[2] | GONG Deyu, LI Liucheng, LI Baozeng, DUO Liping, WANG Yuanhu, MA Yanhua, ZHANG Zhiguo, JIN Yuqi. NH3 measurement based on cavity enhanced absorption spectroscopy[J]. LASER TECHNOLOGY, 2017, 41(5): 664-668. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.009 |
[3] | QIAN Xiaozhong, WANG Qiqi, REN Naifei. Optimization of laser drilling processing parameters for SUS304 based on orthogonal experiments[J]. LASER TECHNOLOGY, 2017, 41(4): 578-581. DOI: 10.7510/jgjs.issn.1001-3806.2017.04.024 |
[4] | TANG Xiao-dan, YAO Jian-hua, KONG Fan-zhi, ZHANG Qun-li. Manufacture and microstructure performance of H13-TiC gradient composite coating made by laser cladding[J]. LASER TECHNOLOGY, 2010, 34(3): 326-330,334. DOI: 10.3969/j.issn.1001-3806.2010.03.012 |
[5] | SUN Yue-qing, ZHOU Jian-zhong, LIANG Qing-lei, CHEN Yi-bin, HUANG Shu. Optimization of laser peening parameters using Taguchi method[J]. LASER TECHNOLOGY, 2008, 32(4): 377-379,386. |
[6] | Li Yuhong. Research of metal-ceramic TiC-B4C-SiC-Co laser cladding on A3 steel[J]. LASER TECHNOLOGY, 2003, 27(5): 396-397,399. |
[7] | Li Qiang, Zhang Bin, Cai Bangwei. Optimum parameters for tripler under amplitude modulation and phase perturbation[J]. LASER TECHNOLOGY, 2003, 27(3): 262-264. |
[8] | Li Jian, Bai Xiaodong, Shen Naicheng, Zang Erjun, Cao Jianping. The parameters optimization of Doppler-broadened iodine at 532nm Nd:YVO4 laser frequency stabilization[J]. LASER TECHNOLOGY, 2003, 27(1): 50-52. |
[9] | Li Yuhong, Zhang Siyu, Zheng Kequan. B4C-TiN-Co surface microstructure and performance of A3 steel by laser cladding at different scanning speed[J]. LASER TECHNOLOGY, 1999, 23(2): 126-128. |
[10] | Huang Feiran, Wei Zhiyi, Yang Jie, Yu Zhenxin. Investigation of dispersion compensation in self mode lockd Ti:Al2O3 lasers[J]. LASER TECHNOLOGY, 1997, 21(2): 96-100. |