Advanced Search
LIU Wei, SHANG Qiufeng. 2-D lifting wavelet de-noising method for Rayleigh BOTDA system[J]. LASER TECHNOLOGY, 2018, 42(3): 346-350. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.011
Citation: LIU Wei, SHANG Qiufeng. 2-D lifting wavelet de-noising method for Rayleigh BOTDA system[J]. LASER TECHNOLOGY, 2018, 42(3): 346-350. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.011

2-D lifting wavelet de-noising method for Rayleigh BOTDA system

More Information
  • Received Date: July 06, 2017
  • Revised Date: August 24, 2017
  • Published Date: May 24, 2018
  • In order to solve the problem that the sensor signal is seriously disturbed by noise in a Brillouin optical time domain analysis (BOTDA) system based on Rayleigh scattering, the 2-D lifting wavelet transform algorithm was used to convert the measured signal from 1-D space to 2-D space, and the noise was reduced by threshold. Through the theoretical analysis and experimental verification, the traditional wavelet and 2-D lifting wavelet denoised data were obtained. The results show that the signal-to-noise ratio of the 2-D lifting wavelet transform is about 10dB higher than that of the traditional wavelet transform, and the computation amount is reduced by 1/3. The 2-D lifting wavelet makes full use of the time correlation of the measured signal, the transformation structure is simple, the operation speed is quick and the noise reduction effect is superior to the traditional wavelet. It is suitable for noise reduction in a Rayleigh BOTDA system. The results of this paper are of great reference to the research of signal denoising in optical fiber sensing systems.
  • [1]
    CUI Q S, PAMUKCU S, LIN A, et al. Distributed temperature sensing system based on rayleigh scattering BOTDA[J]. Sensors Journal IEEE, 2011, 11(2):399-403. DOI: 10.1109/JSEN.2010.2066558
    [2]
    ZHANG C, YU W F, XIA M, et al. Analysis of optical signal characteristics of optical fiber stimulated Brillouin scattering[J]. Laser Technology, 2016, 40(3):363-366(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201603013.htm
    [3]
    WANG Y Q, HE J, MA Y, et al.Effect of random noise on measurement of marine brillouin laser radar[J]. Laser Technology, 2015, 39(1):6-12(in Chinese).
    [4]
    DAKIN J P, PRATT D J, BIBBY G W, et al. Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector[J]. Electronics Letters, 1985, 21(13):569-570. DOI: 10.1049/el:19850402
    [5]
    FARAHANI M A, WYLIE M T V, CASTILLO-GUERRA E, et al. Reduction in the number of averages required in BOTDA sensors using wavelet denoising techniques[J]. Journal of Lightwave Technology, 2012, 30(8):1134-1142. DOI: 10.1109/JLT.2011.2168599
    [6]
    KE T B, LIN L, LI Y Q, et al.Study on denoising method of time-domain reflected signal in brillouin optical cable[J]. Laser Technology, 2014, 38(3):311-315(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201403006.htm
    [7]
    WANG W, XIANG Z, WANG Z D.Denoising for optic gyroscope based on wavelet full frequeney-domain threshold processing[J]. Infrared and Laser Engineering, 2012, 41(12):3401-3405(in Chinese).
    [8]
    CHEN G, ZHU X F, XU Q Q, et al.Application of wavelet and sparse decomposition in discontinuous thin film denoising[J]. Laser Technology, 2014, 38(4):546-550(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201404022.htm
    [9]
    QUAN Z, ZHANG B H.Application of an improved wavelet threshold algorithm in laser interrogation[J]. Laser Technology, 2014, 38(2):218-224(in Chinese).
    [10]
    CHEN Y, CHENG Y, LIU H. Application of improved wavelet a-daptive threshold de-noising algorithm in FBG demodulation[J]. Optik-International Journal for Light and Electron Optics, 2017, 132(3):243-248. http://www.sciencedirect.com/science/article/pii/S0030402616316035
    [11]
    ZHAO L, LIU H, XU SH C, et al.Comparative study on the analysis of fiber vibration signals by HHT and CWT[J]. Laser Technology, 2017, 41(2):260-264(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201702023.htm
    [12]
    LIU L, YU M, YANG R J, et al. Wavelet de-noising for fiber Raman temperature sensing system[J]. Chinese Journal of Lasers, 2013, 40(6):0605005. DOI: 10.3788/CJL
    [13]
    CHEN S Y, LIU J X, DING Y.Study on fusion method of infrared and X-ray image based on wavelet transform[J]. Laser Technology, 2015, 39(5):685-688(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201505021.htm
    [14]
    ZHAO R, GU G H, YANG W.Implementation of visible light image based on polarization imaging[J]. Laser Technology, 2016, 40(2):227-231(in Chinese).
    [15]
    ZHAO L J, LI Y Q.Research on temperature feature extraction of BOTDR system based on wavelet transform[J]. Electrical Measurement and Instrumentation, 2015, 52(1):19-23(in Chinese).
    [16]
    CAI Z H, CHEN W J, ZHONG M.Application of several wavelets in 3-Dimensional surface survey[J]. Laser Technology, 2015, 39(5):610-616(in Chinese).
    [17]
    FARAHANI M A, CASTILLO-GUERRA E, COLPITTS B G. Acce-leration of measurements in BOTDA sensors using adaptive linear prediction[J]. IEEE Sensors Journal, 2013, 13(1):263-272. DOI: 10.1109/JSEN.2012.2213153
    [18]
    ZHAO SH Q, PANG F F, HE M T, et al.Study on signal processing of optical fiber coherent optical time domain reflectometer based on gray image[J]. Chinese Journal of Lasers, 2015, 42(3):0305001(in Chinese). DOI: 10.3788/CJL
    [19]
    SOTO M A, RAMI'REZ J A, THÉVENAZ L.Intensifying Brillouin distributed fibre sensors using image processing[J].Proceedings of the SPIE, 2015, 9634:96342D. http://proceedings.spiedigitallibrary.org/article.aspx?articleid=2441957
    [20]
    LIU A L. Dual filtering algorithm for infrared image based on lifting wavelet transform[J]. Laser Technology, 2015, 39(4):545-548(in Chinese).
  • Related Articles

    [1]ABUDUREXITI Abudurusulii, ZAKIR Arkin, TUNIYAZI Parhat. Effect of laser power density on self-generated magnetic field and electron thermal conduction[J]. LASER TECHNOLOGY, 2013, 37(1): 134-138. DOI: 10.7510/jgjs.issn.1001-3806.2013.01.033
    [2]ZHOU Su-yun, LIU San-qiu, TAO Xiang-yang. Simulation of density solitons and self-generated magnetic field in laser plasma[J]. LASER TECHNOLOGY, 2007, 31(1): 8-11.
    [3]Wang Tao, Cheng Qingmin, Mao Daisheng. Excitation rates of CO laser with magnetically confined discharge[J]. LASER TECHNOLOGY, 2001, 25(2): 147-150.
    [4]Wang Juan, Gu Huaimin, Chen Yongrong, Hu Xuejin, Qiu Junlin, Gong Zhiwei, Zhou Xiaohuo, Sun Haibin. Experimental research of N2 laser excited by magnetically confined discharge[J]. LASER TECHNOLOGY, 2000, 24(6): 357-362.
    [5]Chen Yongzhou, Chen Qingming, Lai Jianjun, Li Jun. Study on reactance characteristic of plasma confined by a transverse magnetic[J]. LASER TECHNOLOGY, 1999, 23(3): 153-155.
    [6]Li Jun, Chen Qingming, Chen Yongzhou, Li Zaiguang. A magnetic pulse compressor for magnetically confined discharges[J]. LASER TECHNOLOGY, 1999, 23(3): 145-148.
    [7]Li Jun, Chen Qing-ming, Li Zai-guang. Analysis on pulsed magnetically confined discharge circuit[J]. LASER TECHNOLOGY, 1998, 22(3): 176-180.
    [8]Chen Lin, Tao Yongxiang, Yin Xianhua, Liang baogen, Tang Xingli. Thermal design of copper vapor laser[J]. LASER TECHNOLOGY, 1996, 20(1): 61-64.
    [9]Chen Qingming, Zhou Fengqing, Li Xiaoping, Sun Hong, Lu Hong, Feng Gonghe, Xu Qianghua, Li Jun. 1kw TEMOO CO2 laser excited by confined discharge[J]. LASER TECHNOLOGY, 1995, 19(5): 261-263.
    [10]Wang Qi, Zhao Li, Zhu Ruiyi, Ma Zuguang. Penning ionization of K in high-current-density discharge[J]. LASER TECHNOLOGY, 1995, 19(3): 174-178.

Catalog

    Article views (6) PDF downloads (5) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return