Advanced Search
ZHANG Bijin, WANG Yang, SONG Haiying, LIU Haiyun, LIU Shibing. Simulation study on harmonic radiation of ultraintense laser-driven thin foil targets[J]. LASER TECHNOLOGY, 2018, 42(1): 113-116. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.022
Citation: ZHANG Bijin, WANG Yang, SONG Haiying, LIU Haiyun, LIU Shibing. Simulation study on harmonic radiation of ultraintense laser-driven thin foil targets[J]. LASER TECHNOLOGY, 2018, 42(1): 113-116. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.022

Simulation study on harmonic radiation of ultraintense laser-driven thin foil targets

More Information
  • Received Date: March 08, 2017
  • Revised Date: April 18, 2017
  • Published Date: January 24, 2018
  • In order to study the higher order harmonic radiation induced by the interaction between super laser and thin foil targets in the reflection direction of incident light, the spatial distribution of high-order harmonic radiation of ultraintense laser-driven thin foil targets (high-density film targets) was investigated in the transmission and reflection direction of incident laser by using particle simulation method, because synchrotron radiation mechanism could lead to higher harmonic generation in the transmission direction of incident laser. The results show that, when the target thickness is less than the laser skin depth and the target plasma density is much larger than the critical density (800Nc), coherent synchrotron radiation can cause higher order radiation in the transmission direction. Harmonic field radiation is driven by relativistic mirror oscillation mechanism in the reflection direction. During the interaction between ultraintense laser and thin foil target, the coexistence of two harmonic generation mechanisms is proved. The influence of target thickness on the order of harmonic radiation was discussed under two kinds of production mechanism. The transmitted harmonics are more than 65 orders when target thickness exceeds 200nm. The study has some theoretical significance to research of high order harmonics generated by ultraintense laser-driven film targets and the future development of attosecond X-ray light sources.
  • [1]
    NOMURA Y, HÖRLEIN R, TZALLAS P, et al. Attosecond phase locking of harmonics emitted from laser-produced plasmas[J]. Nature Physics, 2009, 5(2):124-128. DOI: 10.1038/nphys1155
    [2]
    LIU H, FENG L Q. Mid-infrared field phase measurement and attosecond pulse generation[J]. Laser Technology, 2017, 41(2):151-158(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201702001
    [3]
    FENG L Q, LIU H, LIU H.Spatial distribution of H2+ radiation harmonics in spatial homogeneous and inhomogeneous fields[J]. Laser Technology, 2017, 41(4):467-472(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201704002
    [4]
    BRUNEL F, BRUNEL F. Not-so-resonant, resonant absorption[J]. Physical Review Letters, 1987, 59(1):52-55. DOI: 10.1103/PhysRevLett.59.52
    [5]
    WIKS S C, KRUER W L, TABAK M, et al. Absorption of ultra-intense laser pulses[J]. Physical Review Letters, 1992, 69(9):1383-1386. DOI: 10.1103/PhysRevLett.69.1383
    [6]
    TEUBNER U, GIBBON P.High-order harmonics from laser-irradiated plasma surfaces[J]. Reviews of Modern Physics, 2009, 81(2):445-479. DOI: 10.1103/RevModPhys.81.445
    [7]
    BULANOV S V, NAUMOVA N M, PEGORARO F. Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma[J]. Physics of Plasmas, 1994, 1(3):745-757. DOI: 10.1063/1.870766
    [8]
    DROMEY B, ADAMS D, HÖRLEIN R, et al. Diffraction-limited performance and focusing of high harmonics from relativistic plasmas[J]. Nature Physics, 2009, 5(2):146-152. DOI: 10.1038/nphys1158
    [9]
    NOMURA Y, HÖRLEIN R, TZALLAS P, et al. Attosecond phase locking of harmonics emitted from laser-produced plasmas[J]. Nature Physics, 2009, 5(2):124-128. DOI: 10.1038/nphys1155
    [10]
    BAEVA T, GORDIENKO S, PUKHOV A. Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma[J]. Physical Review, 2006, E74(4):046404. http://d.old.wanfangdata.com.cn/Periodical/wlxb201720013
    [11]
    DROMEY B, ZEPF M, GOPAL A, et al. High harmonic generation in the relativistic limit[J]. Nature Physics, 2006, 2(7):456-459. DOI: 10.1038/nphys338
    [12]
    BAKE M, AIMIDULA A.Proton acceleration of moving electric field driven by ultraintense laser pulse[J]. Laser Technology, 2017, 41(2):302-306(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201702031
    [13]
    HAO D Sh.A new accelerated mechanism of protons in high power laser-plasma[J]. Laser Technology, 2012, 36(5):653-656(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201205021.htm
    [14]
    an der BRÜGGE D, PUKHOV A. Enhanced relativistic harmonics by electron nanobunching[J]. Physics of Plasmas, 2010, 17(3):033110. DOI: 10.1063/1.3353050
    [15]
    PUKHOV A, an der BRÜGGE D, KOSTYUKOV I. Relativistic laser plasmas for electron acceleration and short wavelength radiation generation[J]. Plasma Physics and Controlled Fusion, 2010, 52(12):124039. DOI: 10.1088/0741-3335/52/12/124039
    [16]
    SHUAI B, SHEN B F, LI R X, et al.High order harmonic generation in ultra thin plasma foil[J].Acta Optica Sinica, 2002, 22(10):1153-1158(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb200210001
    [17]
    NIETER C, CARY J R. Vorpal:a versatile plasma simulation code[J]. Journal of Computational Physics, 2004, 196(2):448-473. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231554349/
    [18]
    DROMEY B, RYKOVANOV S, YEUNG M, et al. Coherent synchrotron emission from electron nanobunches formed in relativistic laser-plasma interactions[J]. Nature Physics, 2012, 8(11):804-808. DOI: 10.1038/nphys2439
    [19]
    JACKSON J D, FOX R F. Classical electrodynamics[J]. American Journal of Physics, 1999, 67(9):841-842. http://d.old.wanfangdata.com.cn/Periodical/dxwl200404017
  • Related Articles

    [1]YE Dahua. Analysis of characteristics of Gaussian beam and its application[J]. LASER TECHNOLOGY, 2019, 43(1): 142-146. DOI: 10.7510/jgjs.issn.1001-3806.2019.01.028
    [2]WANG Long, SHEN Xue-ju, ZHANG Wei-an, DONG Hong-jun. Analysis of spectral propagating properties of Gaussian beam[J]. LASER TECHNOLOGY, 2012, 36(5): 700-703. DOI: 10.3969/j.issn.1001-3806.2012.05.032
    [3]WANG Tao, WU Fu-quan, MA Li-li. Effect of Rochon prism on single-mode Gaussian beam[J]. LASER TECHNOLOGY, 2009, 33(3): 310-313.
    [4]WU Jun-fang, WANG Ying, ZHANG Ling. The coupling of Gaussian beam between fibers[J]. LASER TECHNOLOGY, 2004, 28(2): 181-183.
    [5]ZENG Qing-gang, ZHANG Bin, CHU Xiao-liang. Propagation of flat-topped light beams passing through ABCD optical systems[J]. LASER TECHNOLOGY, 2004, 28(2): 144-146.
    [6]Zhao Guangpu, Lü Baida. Propagation of Gaussian beams through a multi-Gaussian apertured ABCD system[J]. LASER TECHNOLOGY, 2003, 27(3): 259-261.
    [7]Yang Chuping, He Zhenjiang, Yang Guanling. The effect of Gaussian beam on particle size measurement[J]. LASER TECHNOLOGY, 2002, 26(4): 311-313.
    [8]Ji Xiao-ling, LÜ Bai-da. Comparison of focusing properties of Gaussian beams passing through two kinds of spherically aberrated lenses[J]. LASER TECHNOLOGY, 2002, 26(3): 231-233.
    [9]Kang Jun, Tang Yonglin, Li Dayi, Chen Jianguo, Zhang Kejun. Propagating characteristics of Gaussian beam in logarithmically nonlinear media[J]. LASER TECHNOLOGY, 2000, 24(2): 118-122.
    [10]Lin Juan, Guo Fuyuan. Complex transformation and geometrical optics method of Gaussian beam[J]. LASER TECHNOLOGY, 1997, 21(4): 227-230.

Catalog

    Article views (3) PDF downloads (4) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return