Research of microstructure and residual stress of copper foils processed by laser shock forming
-
Graphical Abstract
-
Abstract
In order to study influence of laser forming methods on forming profile and microstructure, T2 copper foils with thickness of 40μm and 80μm were used to do experiments of laser shock micro bulging and micro deep drawing. At the same time, ABAQUS finite element simulation was used to simulate the experiment, and the displacement and residual stress field of the foil under different deformation modes were studied. The results show that, after bulging, necking occurs in the deformed region of copper foils. The deformation mechanism mainly includes dislocation sliding, deformation distortion grain and mechanical twinning in the laser processed region. The upper surface of the foil (laser shock surface) is residual tensile stress and the maximum value is about 372.3MPa. The lower surface of the foil (the opposite of laser shock surface) is residual compressive stress and the maximum value is about -218.7MPa. For drawing, foil forming profile is smooth and has uniform thickness distribution. A large number of dislocations and mechanical twinning appear in laser processed region. The upper surface of the foil is residual compressive stress and the maximum value is about -365.6MPa. The lower surface of the foil is residual tensile stress and the maximum value is about 203MPa. This result is helpful for the control of laser shock forming of foil.
-
-