Advanced Search
ZUO Hui, ZHANG Kai, CAO Xu, YE Yunxia. Research of microstructure and residual stress of copper foils processed by laser shock forming[J]. LASER TECHNOLOGY, 2018, 42(1): 94-99. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.018
Citation: ZUO Hui, ZHANG Kai, CAO Xu, YE Yunxia. Research of microstructure and residual stress of copper foils processed by laser shock forming[J]. LASER TECHNOLOGY, 2018, 42(1): 94-99. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.018

Research of microstructure and residual stress of copper foils processed by laser shock forming

More Information
  • Received Date: March 05, 2017
  • Revised Date: April 03, 2017
  • Published Date: January 24, 2018
  • In order to study influence of laser forming methods on forming profile and microstructure, T2 copper foils with thickness of 40μm and 80μm were used to do experiments of laser shock micro bulging and micro deep drawing. At the same time, ABAQUS finite element simulation was used to simulate the experiment, and the displacement and residual stress field of the foil under different deformation modes were studied. The results show that, after bulging, necking occurs in the deformed region of copper foils. The deformation mechanism mainly includes dislocation sliding, deformation distortion grain and mechanical twinning in the laser processed region. The upper surface of the foil (laser shock surface) is residual tensile stress and the maximum value is about 372.3MPa. The lower surface of the foil (the opposite of laser shock surface) is residual compressive stress and the maximum value is about -218.7MPa. For drawing, foil forming profile is smooth and has uniform thickness distribution. A large number of dislocations and mechanical twinning appear in laser processed region. The upper surface of the foil is residual compressive stress and the maximum value is about -365.6MPa. The lower surface of the foil is residual tensile stress and the maximum value is about 203MPa. This result is helpful for the control of laser shock forming of foil.
  • [1]
    FAN J R, HUANG Sh, ZHOU J Zh, et al. Analysis and expectation of microscale laser shock forming[J]. Laser & Optoelectronics Progress, 2012, 49(1):10003(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200097881
    [2]
    HUANG Zh H, XING Y, TONG Zh C. State of the development in micro-forming technology[J]. China Metalforming Equipment & Manufacturing Technology, 2007, 42(3):19-24(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DYJX200703006.htm
    [3]
    ZHENG Ch, SUN Sh, JI Zh, et al. Microscale laser peen forming of sheet metal and its research situation[J]. Journal of Plasticity Engineering, 2009, 16(4):59-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxgcxb200904012
    [4]
    ENGEL U, ECKSTEIN R. Microforming-from basic research to its realization[J]. Journal of Materials Processing Technology, 2002, 125(2):35-44. http://www.sciencedirect.com/science/article/pii/S0924013602004156
    [5]
    SARWAR M S U, DAHMARDEH M, NOJEH A, et al. Batch-mode micropatterning of carbon nanotube forests using UV-LIGA assisted micro-electro-discharge machining[J]. Journal of Materials Processing Technology, 2014, 214(11):2537-2544. DOI: 10.1016/j.jmatprotec.2014.05.007
    [6]
    NIEHOFF S H, VOLLERTSEN F. Non-thermal laser stretch-forming[J]. Advanced Materials Research, 2005, 6/8:433-440. DOI: 10.4028/www.scientific.net/AMR.6-8
    [7]
    VOLLERTSEN F, SAKKIETTIBUTRA J. Different types to use laser as a forming tool[J]. Physics Procedia, 2010, 5:193-203. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000004009679
    [8]
    NIEHOFF S H, HU Z Y, VOLLERTSEN F. Mechanical and laser micro deep drawing[M].Key Engineering Materials, 2007, 344: 799-806.
    [9]
    GAO H, YE C, CHENG G J. Deformation behaviors and critical parameters in microscale laser dynamic forming[J]. Journal of Manufacturing Science & Engineering, 2009, 131(5):051011. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=edcc0d80dbd41f1c73e7a4b3e4790494
    [10]
    CHENG G J, PIRZADA D, MING Z. Microstructure and mechanical property characterizations of metal foil after microscale laser dynamic forming[J]. Journal of Applied Physics, 2007, 101(6):345-360. DOI: 10.1063/1.2710334
    [11]
    ZHANG X L, KOU H Ch, LI H W, et al. Study on the microstructure and mechanical properties of CP-Ti during cold deep drawing[J]. Journal of Plasticity Engineering, 2010, 17(3):93-97(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxgcxb201003018
    [12]
    YUAN G D, SHI D Q, JIANG Y F, et al. Study on residual stress distrubution of laser shock forming metal-sheet[J]. Laser Technology, 2010, 34(3):303-305(in Chinese). http://cn.bing.com/academic/profile?id=4aa909fa35476145bfb1baf725d4fb19&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    ZHEN Ch. Numberical simulation and experimental study on microscale laser peen forming[D]. Ji'nan: Shandong University, 2011: 23-48(in Chinese).
    [14]
    ZHANG J, HUA Y Q, CAO J D. Simulation of propagation characteristics of stress wave in copper films with laser shock processing[J]. Laser Technology, 2016, 40(4):601-605(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201604030
    [15]
    LIU Z A, SHI W, WANG Ch. Study on numerical simulation of residual stressesinduced by laser shock processing[J]. Laser Technology, 2017, 41(1):1-5(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201701001.htm
    [16]
    LI K, YAO Z, HU Y, et al. Friction and wear performance of laser peen textured surface under starved lubrication[J]. Tribology International, 2014, 77:97-105. DOI: 10.1016/j.triboint.2014.04.017
    [17]
    JU H K, YUN J K, KIM J S. Effects of simulation parameters on residual stresses for laser shock peening finite element analysis[J]. Journal of Mechanical Science and Technology, 2013, 27(7):2025-2034. DOI: 10.1007/s12206-012-1263-0
    [18]
    YU T Y. Simulation and experimental study on residual stress field of 2024 aluminum alloy induced by flat-top laser beam[J]. Chinese Journal of Lasers, 2013, 39(10):1003001(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201204861242
    [19]
    PENG H B, ZHANG H J. Research development of the constitutive models of metal materials[J]. Meterials for Mechanical Engineering, 2012, 36(3):5-10(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200659548
    [20]
    FABBRO R, FOURNIER J, BALLARD P, et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2):775-784. DOI: 10.1063/1.346783
    [21]
    DEVAUX D, FABBRO R, TOLLIER L, et al. Generation of shock waves by laser-induced plasma in confined geometry[J]. Journal of Applied Physics, 1993, 74(4):2268-2273. DOI: 10.1063/1.354710
    [22]
    YE Y X, FENFY Y, LIAN Z C, et al. Plastic deformation mechanism of polycrystalline copper foil shocked with femtosecond laser[J]. Applied Surface Science, 2014, 309(4):240-249. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fc5f1e59b5a87c2c2147879a5fbd44a5
    [23]
    ZHEN C, SUN S, JI Z, et al. Numerical simulation and experimentation of micro scale laser bulge forming[J]. International Journal of Machine Tools & Manufacture, 2010, 50(12):1048-1056. http://www.sciencedirect.com/science/article/pii/S0890695510001525
    [24]
    ZHOU M, ZHANG Y K, CAI L. Ultrahigh-strain-rate plastic deformation of a stainless-steel sheet with TiN coatings driven by laser shock waves[J]. Applied Physics, 2003, A77(3):549-554. DOI: 10.1007/s00339-002-1491-8
  • Related Articles

    [1]WANG Sheng, SHAO Sicheng, BI Shaoping, LIU Wenjun, WU Jun, YU Wenli. Study on microstructure and properties of laser cladding Fe-based alloy layer on TC4 surface[J]. LASER TECHNOLOGY, 2022, 46(5): 653-656. DOI: 10.7510/jgjs.issn.1001-3806.2022.05.012
    [2]ZHAO Xinxin, XIAO Huaqiang, YOU Chuanchuan, FENG Jinyu, XIAO Yi. Process and microstructure properties of laser cladding TiAl alloy coating on TC4 surface[J]. LASER TECHNOLOGY, 2021, 45(6): 697-702. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.004
    [3]YOU Chuanchuan, XIAO Huaqiang, REN Lirong, ZHAO Xinxin. Microstructure and properties of laser cladding Ti-Al-N composite coating on TC4 surface[J]. LASER TECHNOLOGY, 2021, 45(5): 585-589. DOI: 10.7510/jgjs.issn.1001-3806.2021.05.008
    [4]XIN Xiucheng, HUANG Genzhe, ZHANG Jinjie, ZHANG Hong, WANG Jingang. Microstructure and mechanical properties of composite welded joints of high nitrogen steel[J]. LASER TECHNOLOGY, 2018, 42(4): 476-481. DOI: 10.7510/jgjs.issn.1001-3806.2018.04.009
    [5]ZUO Hui, ZHANG Kai, CAO Xu, YE Yunxia. Research of microstructure and residual stress of copper foils processed by laser shock forming[J]. LASER TECHNOLOGY, 2018, 42(1): 94-99. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.018
    [6]ZHANG Mingyang, ZHU Ying, GUO Wei, HUANG Shuai, HOU Guo. Effects of laser shock processing on fatigue properties of TC17 titanium alloy[J]. LASER TECHNOLOGY, 2017, 41(2): 231-234. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.017
    [7]WU An-qi, LIU Qi-bin, SUN Gui-xiang, QIN Shui-jie. Effect of Y2O3 on microstructure and property of laser surface alloying on 40Cr steel[J]. LASER TECHNOLOGY, 2011, 35(1): 4-6,93. DOI: 10.3969/j.issn.1001-3806.2011.01.002
    [8]YUE Yun, ZHANG Zhan-ling, ZHANG Ke-ke, MA Ning, SHI Hong-xin. Microstructure and property of 1.6%C ultrahigh carbon steel after laser surface treating[J]. LASER TECHNOLOGY, 2010, 34(4): 514-516. DOI: 10.3969/j.issn.1001-3806.2010.04.022
    [9]XU Ren-jun, ZHANG Yong-kang, CHEN Ju-fang. Microstructure change of AZ91 magnesium alloy surface melted by laser[J]. LASER TECHNOLOGY, 2008, 32(5): 487-489.
    [10]SHAN Ji-guo, REN Jia-lie, DING Jian-chun, ZHAO Nan-nan. Microstructure and wear resistance of Cr powder alloying layers on cast iron[J]. LASER TECHNOLOGY, 2004, 28(1): 1-4.

Catalog

    Article views (7) PDF downloads (17) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return