Advanced Search
YUAN Fengbo, WEI Haiying, HUANG Chu, WU Jiazhu, ZHANG Yi. Taguchi experimental investigation on process energy efficiency of laser direct metal deposition[J]. LASER TECHNOLOGY, 2018, 42(1): 24-29. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.005
Citation: YUAN Fengbo, WEI Haiying, HUANG Chu, WU Jiazhu, ZHANG Yi. Taguchi experimental investigation on process energy efficiency of laser direct metal deposition[J]. LASER TECHNOLOGY, 2018, 42(1): 24-29. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.005

Taguchi experimental investigation on process energy efficiency of laser direct metal deposition

More Information
  • Received Date: March 20, 2017
  • Revised Date: May 14, 2017
  • Published Date: January 24, 2018
  • In order to study influence of direct metal laser deposition process parameters on the process efficiency, a self-developed HCX60 five-axis laser composite manufacturing center was adopted to carry out Taguchi experiment for process efficiency. Signal-to-noise ratio analysis, range analysis and variance analysis were used to analyze the results. The influence of laser power, powder feed rate, scanning rate, lifting capacity and overlap ratio on process energy efficiency was discussed and the optimum combination of technological factors was put forward. The results show that, powder feeding rate is the most significant parameter for the process of energy efficiency. The best combination of parameters is laser power P of 500W, powder feeding rate f of 28g/min, scanning speed v of 600mm/min, lifting capacity h of 0.6mm and overlap rate λ of 30%. The research provides theoretical and experimental grounds for further studying the effect of process parameters on process energy efficiency and its influence rule.
  • [1]
    HERRING H. Energy efficiency-a critical view[J]. Energy, 2006, 31(1):10-20. DOI: 10.1016/j.energy.2004.04.055
    [2]
    APOSTOLOS F, ALEXIOS P, GEORGIOS P, et al. Energy efficiency of manufacturing processes:a critical review[J]. Procedia Cirp, 2013, 7(5):628-633. http://d.old.wanfangdata.com.cn/Periodical/pre_d46de0d1-6939-4f53-b358-359027467fa6
    [3]
    LONG R Sh, LIU W J, SHANG X F. Numerical simulation of temperature field on laser metal deposition shaping[J]. Laser Technology, 2007, 31(4):394-396(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS200704017.htm
    [4]
    MENG W D, SHI Sh H, FU G Y, et al. Experimental study about vertical surface accumulation with coaxial inside-beam power feeding[J]. Laser Technology, 2015, 39(5):594-597(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201505003
    [5]
    DAHMEN M, GüDüKKURT O, KAIERLE S. The ecological footprint of laser beam welding[J]. Physics Procedia, 2010, 5:19-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000004006207
    [6]
    FYSIKOPOULOS A, PASTRAS G, ALEXOPOULOS T, et al. On a generalized approach to manufacturing energy efficiency[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73(9/12):1437-1452. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2fa3e1c43a4e2295d27a95fa53d2a8c4
    [7]
    XUE H, KUMAR V, SUTHERLAND J W. Material flows and environmental impacts of manufacturing systems via aggregated input-output models[J]. Journal of Cleaner Production, 2007, 15(13/14):1349-1358. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5ee7d7017bab25da52a2e24267b7e04a
    [8]
    BRANHAM M, GUTOWSKI T G, JONES A, et al. A thermodynamic framework for analyzing and improving manufacturing processes[C]//International Symposium on Electronics and the Environment.New York, USA: IEEE, 2008: 1-6.
    [9]
    CHOI A C K, KAEBERNICK H, LAI W H. Manufacturing processes modelling for environmental impact assessment[J]. Journal of Materials Processing Technology, 1997, 70(1/3):231-238. DOI: 10.1016-S0924-0136(97)00067-8/
    [10]
    BHUSHAN R K. Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites[J]. Journal of Cleaner Production, 2013, 39(1):242-254. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=89dce3da6c036d4d556524e5b29019b8
    [11]
    DRAGANESCU F, GHEORGHE M, DOICIN C V. Models of machine tool efficiency and specific consumed energy[J]. Journal of Materials Processing Technology, 2003, 141(1):9-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=237965722e59be6e6b0bf4df8dfd21fd
    [12]
    YAN J H, FENG C H, LI L. Sustainability assessment of machining process based on extension theory and entropy weight approach[J]. The International Journal of Advanced Manufacturing Technology, 2014, 71(5/8):1419-1431. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7a8b7c141fb3f48cd13bf61f46b2033f
    [13]
    FRANCO A, ROMOLI L. Characterization of laser energy consumption in sintering of polymer based powders[J]. Journal of Materials Processing Technology, 2012, 212(4):917-926. DOI: 10.1016/j.jmatprotec.2011.12.003
    [14]
    PASTRAS G, FYSIKOPOULOS A, STAVROPOULOS P, et al. An approach to modelling evaporation pulsed laser drilling and its energy efficiency[J]. The International Journal of Advanced Manufacturing Technology, 2014, 72(9/12):1227-1241. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ef63b410efd6993ec4181c3545247659
    [15]
    LI W, KARA S. An empirical model for predicting energy consumption of manufacturing processes:a case of turning process[J]. Proceedings of the Institution of Mechanical Engineers, 2011, B225(9):1636-1646. http://cn.bing.com/academic/profile?id=e11245cfda5f50f657fb330e40d278d3&encoded=0&v=paper_preview&mkt=zh-cn
    [16]
    MORI M, FUJISHIMA M, INAMASU Y, et al. A study on energy efficiency improvement for machine tools[J]. CIRP Annals-Manufacturing Technology, 2011, 60(1):145-148. DOI: 10.1016/j.cirp.2011.03.099
    [17]
    LI L, YAN J, XING Z. Energy requirements evaluation of milling machines based on thermal equilibrium and empirical modelling[J]. Journal of Cleaner Production, 2013, 52(4):113-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d5ad3da338a77a10a7f78c44545ba3b2
    [18]
    GUO Y, DUFLOU J R, LAUWERS B. Energy-based optimization of the material stock allowance for turning-grinding process sequence[J]. The International Journal of Advanced Manufacturing Technology, 2014, 75(1):503-513. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a514fbbe3b7fe8195cad496f2437fc52
    [19]
    HUANG Zh T, YANG J, ZhANG Ch Y, et al. Energy-oriented CNC milling process modelling and parameter optimization[J]. Chinese Journal of Mechanical Engineering, 2016, 27(18):2524-2532(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgjxgc201618019
    [20]
    SHI B F, ZHANG A F, QI B L, et al. Influence of heat accumulation on microstructure and property of Ti-6Al-4V in laser direct forming[J]. Laser Technology, 2016, 40(1):29-32(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201601008
    [21]
    ZHANG D Q, LIU X D, ZHANG W B, et al. Study on effect of scanning path on quality of single laser cladding layer[J]. Hot Working Technology, 2016, 45(20):149-152(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJGY201620044.htm
  • Related Articles

    [1]YANG Kaixin, SUN Wenlei, XIAO Qi, CHEN Zihao. Study on hardness and wear resistance of laser cladding Fe06+(TiC/Mo) composite coatings[J]. LASER TECHNOLOGY, 2023, 47(3): 393-399. DOI: 10.7510/jgjs.issn.1001-3806.2023.03.017
    [2]WU Teng, SHI Wenqing, XIE Linyi, GONG Meimei, HUANG Jiang, XIE Yuping, HE Kuanfang. Forming quality control method of laser cladding Fe-based TiC composite coating[J]. LASER TECHNOLOGY, 2022, 46(3): 344-354. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.008
    [3]WANG Yigang. Microstructure and antioxidant properties of TC11 alloy irradiated by intense pulsed laser[J]. LASER TECHNOLOGY, 2020, 44(5): 639-642. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.019
    [4]JIN Chengjia, CHEN Bingquan, LI Wei, JIAO Jiafei, REN Xudong. Effect of laser shock peening on corrosion resistance of AISI430 ferritic stainless steel[J]. LASER TECHNOLOGY, 2020, 44(2): 212-216. DOI: 10.7510/jgjs.issn.1001-3806.2020.02.013
    [5]LIN Chenghu, REN Jingri, HE Chunlin. Microstructure of in-situ synthesized chromium carbide Ni-base composite coating by laser cladding[J]. LASER TECHNOLOGY, 2014, 38(2): 186-190. DOI: 10.7510/jgjs.issn.1001-3806.2014.02.009
    [6]HE Liang-hua, ZHOU Fang, YANG Hui-yao. Research of in situ synthesis of TiC-TiB2 reinforced Co-based composite coating by laser cladding[J]. LASER TECHNOLOGY, 2013, 37(3): 306-309. DOI: 10.7510/jgjs.issn.1001-3806.2013.03.008
    [7]SI Xiu-li, ZHANG Si-jing, BAI Wei, YANG Yu-ling. Study on in-situ formation of CaTiO3 biocoating via laser cladding and its thermodynamic analysis[J]. LASER TECHNOLOGY, 2013, 37(1): 121-125. DOI: 10.7510/jgjs.issn.1001-3806.2013.01.030
    [8]LIU Ming-kun, TANG Hai-bo, FANG Yan-li, ZHANG Shu-quan, LIU Dong, WANG Hua-ming. Wear resistance of laser clad TiC/Ti-Ti2 Co coating on titanium alloy[J]. LASER TECHNOLOGY, 2011, 35(4): 444-447,452. DOI: 10.3969/j.issn.1001-3806.2011.04.003
    [9]Sun Ronglu, Guo lixin, Dong Shangli, Yang Dezhuang. Study on laser cladding of NiCrBSi (Ti)-TiC metal-ceramiccomposite coatings on titanium alloy[J]. LASER TECHNOLOGY, 2001, 25(5): 343-346.
    [10]Zhang Siyu, Wang Biben, Zheng Kequan. Study of laser smelting-cladding WC-TiC-SiC-Co on carbon steel surface[J]. LASER TECHNOLOGY, 1994, 18(2): 110-113.

Catalog

    Article views (3) PDF downloads (7) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return