HTML
-
本文中选用的材料为AISI430铁素体不锈钢,其常温下的化学成分如表 1所示。本次实验的试样尺寸为20mm×20mm×3mm的方块试样,依次使用400#~2000#的水砂纸将待进行激光冲击的试样表面打磨光滑,然后将打磨好的试样用酒精清洗。
Cr Ni Mo Mn Si C P Cu N Co Fe 0.1650 0.0013 0.0002 0.0053 0.0050 0.0005 0.0003 0.0007 0.0006 0.0002 balance Table 1. Mass fraction of AISI430 ferritic stainless steel[13]
激光冲击实验采用江苏大学机械工程学院的Nd:YAG激光冲击设备。本次激光冲击实验中选取厚度均匀的水流作为约束层,厚度为0.1mm的铝箔为吸收层,具体的激光冲击参量如表 2所示,激光冲击路径如图 1所示。
pulse energy/J spot diameter/mm pulse width/ns frequency/Hz wavelength/nm 3, 5, 7 3 10 1 1064 Table 2. Parameters used in laser shock peening
-
残余应力的测量设备为LXRD型Х射线应力测定仪。测试方法采用侧倾固定Ψ法;2θ扫描起始角和终止角分别为162°和150°,扫描步距0.1°;定峰方法为交相关法;计数时间为0.5s;Ψ角为0°, 25°, 35°和45°;X光管高压值选取22kV,电流值选取6mA。测量时采用逐层剥落法,在每一层表面上选取3个点进行测量,再求3点的平均值作为该层的残余应力值。
-
电化学实验中所使用的设备为CHI760E型电化学工作站。实验中使用的腐蚀溶液是质量分数为0.035的NaCl溶液,参比电极为饱和甘汞电极,辅助电极为铂片电极。开路电位的测试时间设置为300s;阻抗谱的测试时电位设置为开路电位值,频率选取为0.1Hz~100000Hz,交流电压选取为10mV;极化曲线测量时,初始电位设置为-0.6V,终止电位设置为0.2V,扫描速率为0.005V/s。
1.1. 实验材料和激光冲击参量
1.2. 残余应力检测
1.3. 电化学实验
-
图 2为不同激光能量冲击下AISI430铁素体不锈钢试样的截面残余应力分布图。原始试样的表面表现为残余拉应力,而经过激光冲击后的AISI430不锈钢试样的表面都是残余压应力。激光能量为3J, 5J和7J时,AISI430铁素体不锈钢的表面残余压应力分别为233MPa, 284MPa和339MPa。随着激光能量的增加,试样表面的残余压应力的幅值也得到提升。激光能量为3J时,试样的残余应力层深度达到400μm。激光能量提升到5J和7J时,残余应力层的深度分别提升到800μm和900μm左右。当激光作用在试样表面时,试样表面的吸层会吸收激光的绝大部分能量,并形成压力极高的等离子体冲击波。受约束层的约束作用,冲击波向试样内部传播,当冲击波压力大于靶材雨贡纽弹性极限时,激光冲击的区域发生塑性变形,产生残余压应力[14]。
-
图 3是不同能量激光冲击下的AISI430铁素体不锈钢在质量分数为0.035的NaCl溶液下的极化曲线。从图中可以看出,激光冲击后的试样的自腐蚀电位相较于原始试样要偏向于正方向。随着激光能量的增加,试样的自腐蚀电位也在向正方向偏移,说明试样的腐蚀倾向降低,在腐蚀热力学上的稳定性提高。
Figure 3. Polarization curves of AISI430 stainless steel in NaCl solution(mass fraction of 0.035) before and after LSP with different energies
各极化曲线所得出的特征值如表 3所示,Ecorr为自腐蚀电位,icorr为腐蚀电流密度。腐蚀电流密度是衡量抗腐蚀能力的一个重要因素之一,腐蚀电流密度越低表示试样的腐蚀速率越慢[15]。从表中可以看出,激光冲击后AISI430铁素体不锈钢的腐蚀电流密度明显降低。相比于原始试样,3J, 5J和7J激光能量冲击的试样的腐蚀电流密度分别减少了24.1μA/cm-2,25.18μA/cm-2和28.18μA/cm-2。这表明经过激光冲击处理过后的AISI430铁素体不锈钢的腐蚀速度下降,抗腐蚀性能得到提升。
sample Ecorr/mV icorr/(μA·cm-2) original -251 30.71 LSP, 3J -227 6.61 LSP, 5J -202 5.53 LSP, 7J -192 4.43 Table 3. Tafel parameters of AISI430 stainless steel in NaCl solution(mass fraction of 0.035)
-
在质量分数为0.035的NaCl溶液中测出的AISI430铁素体不锈钢试样的电化学阻抗谱(electrochemical impedance spectroscopy, EIS)图及其等效电路如图 4所示。横坐标Z′为阻抗实部,纵坐标Z″为阻抗虚部。从图中可以看出,不同能量冲击过的AISI430不锈钢在NaCl溶液中测出的阻抗谱都呈典型的单个容抗弧状,容抗弧的半径大小表明了AISI430不锈钢试样的抗腐蚀能力。激光冲击后的试样的容抗弧明显要大于未经过激光冲击的试样的容抗弧,并且随着冲击能量的提高,容抗弧的半径也随之增大。等效电路图中,Rs为溶液的电阻,Rp为试样的反应电阻, CPE(constant phase element)代表恒相位角原件[16]。
Figure 4. EIS and equivalent circuit of AISI430 stainless steel in NaCl solution(mass fraction of 0.035) before and after LSP with different laser energies equivalent circuit
表 4为等效电路的拟合数据,表中TCPE和PCPE分别是CPE的两个参量。从表中可以看出,在NaCl溶液中,随着激光能量的上升,试样的反应电阻也在逐渐上升,说明激光冲击后,试样表面钝化膜的溶解速度减慢。同时,激光冲击后弥散系数PCPE增大说明激光冲击可以使AISI430铁素体不锈钢在腐蚀过程中离子通过表面钝化膜的阻力增大,在膜内的扩散能力减弱,钝化膜的稳定性提高。这些说明了激光冲击使AISI430铁素体不锈钢抗腐蚀性能得到提升,同时也与所得的极化曲线结果一致。
sample Rs/Ω TCPE/(μF·cm-2) PCPE Rp/Ω original 1.987 8.316×10-5 0.638 1212 3J 2.391 4.512×10-5 0.694 1299 5J 2.005 2.443×10-5 0.713 1494 7J 1.836 2.591×10-5 0.702 1693 Table 4. Fitting data of equivalent circuit
-
AISI430铁素体不锈钢在NaCl溶液中电化学腐蚀后所得到的微观形貌如图 5所示。从图中可以看出,原始试样表面有明显的腐蚀凹坑, 且有较多的条带状腐蚀。从极化曲线中可以得出,AISI430铁素体不锈钢在NaCl溶液中发生点蚀的倾向较小,但其本身存在的条带状组织具有电化学不均匀性,所以会发生腐蚀微电池反应,并且AISI430不锈钢处于未结晶状态,拥有较高能量,最终表现为条带状的腐蚀痕迹[17]。经过3J激光能量冲击后的试样表面上只有零星的几个腐蚀凹坑,且腐蚀凹坑的直径要远小于原始试样,试样表面的条带状腐蚀痕迹也明显减少。当激光能量提升到5J和7J时,试样表面的腐蚀痕迹进一步减少。由此说明激光冲击强化可以增强AISI430铁素体不锈钢的抗腐蚀性能。
-
AISI430铁素体不锈钢电化学腐蚀的过程主要分为3个阶段[18],其示意图如图 6所示。
第一阶段为活性溶解阶段,作为阳极的Fe和Cr溶解后以离子的形式进入溶液中;第二阶段为钝化阶段,此时材料表面生成一层FeO氧化膜,将溶液与基体分隔,并保护基体不被腐蚀,也可以防止基体进一步的发生氧化;第三阶段为过钝化阶段,此时材料表面的氧化膜被Cl-离子侵蚀,逐渐产生裂纹、气孔等缺陷,最终丧失保护能力,基体再次发生腐蚀。原始试样的表面氧化膜较为疏松,易被Cl-离子侵蚀,腐蚀速度较快。激光冲击强化可以在试样的表面引入一层残余压应力,在腐蚀过程中,残余压应力的存在可以有效减少氧化膜的破裂,降低氧化膜的内部缺陷,使得腐蚀表面生成的氧化膜更加稳定、致密,难以受到Cl-离子的侵蚀,从而减缓了材料腐蚀的速度,提高了AISI430铁素体不锈钢抵抗腐蚀的能力。且激光能量的增加会使表面残余压应力的幅值变大,从而使表面的氧化膜更加稳定,增强了抗腐蚀性能。