Advanced Search
WEN Quan, ZHAO Shanhong, FANG Yingwu, YANG Liwei, WANG Yi, DING Xifeng, LIN Tao. Research on de-orbiting mechanism of space debris driven by ground-based laser[J]. LASER TECHNOLOGY, 2017, 41(3): 307-311. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.001
Citation: WEN Quan, ZHAO Shanhong, FANG Yingwu, YANG Liwei, WANG Yi, DING Xifeng, LIN Tao. Research on de-orbiting mechanism of space debris driven by ground-based laser[J]. LASER TECHNOLOGY, 2017, 41(3): 307-311. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.001

Research on de-orbiting mechanism of space debris driven by ground-based laser

More Information
  • Received Date: July 24, 2016
  • Revised Date: September 13, 2016
  • Published Date: May 24, 2017
  • In order to stuy the de-orbiting mechanism of small scale space debris, the models of spinning and non-spinning space debris were established. The variation of space debris velocity ablating by ground-based laser was analyzed theoretically. Orbit maneuver mode of space debris irradiating by laser was investigated. The variations of perigee and apogee altitudes, semi-major axis and eccentricity with the change of initial true anomaly of the space debris under the irradiation of high-energy pulse laser were simulated and analyzed. The simulation results show that there is an optimal action area of removal of space debris using ground-based laser. The de-orbiting effect of spin debris is the best with initial true anomaly in the range of 86°~151°. The de-orbiting effect of non-spinning debris is the best with initial true anomaly in the range of 130°~162°. The de-orbiting effect of spinning debris is superior to non-spinning debris.
  • [1]
    LI Ch L, OUYANG Z Y, DU H. Space debris and space environment[J]. Quaternary Sciences, 2002, 22(6): 540-551(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dsjyj200206008
    [2]
    GONG Z Zh, XU K B, MU Y Q, et al. The space debris environment and the active debris removal techniques[J]. Spacecraft Environment Engineering, 2014, 31(2): 129-135(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTotal-HTHJ201402004.htm
    [3]
    APOLLONOV V V. High power lasers for space debris elimination[J]. Chinese Optics, 2013, 6(2): 187-195. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zggxyyygxwz201302008
    [4]
    PHIPPS C, ALBRECHT U, FRIEDMAN H, et al. ORION: clearing near-earth space debris using a 20kW, 530nm, Earth-based, repetitively pulse laser[J]. Laser and Particle Beams, 1996, 14(1): 1-44. DOI: 10.1017/S0263034600009733
    [5]
    ESMILLER B, JACQUELARDB C. CLEANSPACE "small debris removal by laser illumination and complementary technologies"[C] //Beamed Energy Propulsion. AIP Conference Proceedings. New York, USA: American Institute of Physics, 2011: 347-353.
    [6]
    HONG Y J, JIN X, CHANG H. Discussion of key problems in space based laser centimeter orbital debris removal[J]. Infrared and Laser Engineering, 2016, 45(2): 0229001(in Chinese). DOI: 10.3788/irla
    [7]
    CHANG H, JIN X, ZHOU W J. Experiment research on plasma plume expansion induced by nanosecond laser ablation Al[J].Infrared and Laser Engineering, 2013, 42(s1): 43-46 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc2013z1009
    [8]
    LU J Y, WANG J, MA Y G, et al. Theoretical simulations of the mechanical characteristics of laser induced plasma for monatomic target[J]. Optics and Precision Engineering, 2004, 12(5): 550-554(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc200405016
    [9]
    CHANG H, JIN X, HONG Y J. Modeling and simulation on active space debris orbit maneuver based on laser ablation impulse coupling[J]. Acta Aeronautics et Astronautics Sinica, 2013, 34(10): 2325-2332(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201310009
    [10]
    JIN X, HONG Y J, CHANG H. Simulation analysis of removal of elliptic orbit space debris using ground-based laser[J]. Acta Aeronauticaet Astronautica Sinica, 2013, 34(9): 2064-2073(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201309007
    [11]
    FANG Y W, ZHAO Sh H, YANG L W, et al. Research on action rules of ground-based laser irradiating small scale space debris in LEO[J]. Infrared and Laser Engineering, 2016, 45(2): 229002(in Chinese). DOI: 10.3788/irla
    [12]
    PHIPPS C R, BAKER K L, LIBBY S B, et al. Removing orbital debris with lasers[J]. Advances in Space Research, 2012, 49(9): 1283-1300. DOI: 10.1016/j.asr.2012.02.003
    [13]
    STEVERDING B, DUDEL H P. Laser-induced shocks and their capability to produce fracture[J]. Journal of Applied Physics, 1976, 47(5): 1940-1945. DOI: 10.1063/1.322917
    [14]
    LIEDAHL D A, RUBENCHIK A, LIBBY S B, et al. Pulsed laser interactions with space debris: Target shape effects[J]. Advances in Space Research, 2013, 52(5): 895-915. DOI: 10.1016/j.asr.2013.05.019
  • Related Articles

    [1]YANG Zihe, ZHANG Peng, ZHANG Zhening. Design and feasibility study of space-based laser debris removal system[J]. LASER TECHNOLOGY, 2024, 48(1): 1-7. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.001
    [2]ZHANG Meng, FANG Yingwu, ZHANG Guangpeng. Numerical simulation of dynamic response for aluminum target debris irradiated by nanosecond pulse laser[J]. LASER TECHNOLOGY, 2023, 47(4): 541-546. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.015
    [3]ZHANG Guanghui, HUANG Yuxing, HUANG Ping, ZHOU Liao, JIAO Hui, LONG Yuhong. Study on energy transmission law of water-laser coupling in water-jet guided laser technology[J]. LASER TECHNOLOGY, 2022, 46(6): 749-754. DOI: 10.7510/jgjs.issn.1001-3806.2022.06.006
    [4]ZHANG Jinghao, ZHENG Yongchao, SHANG Weidong, GONG Zizheng. Research of space-based photon counting laser detection for space debris[J]. LASER TECHNOLOGY, 2017, 41(3): 312-317. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.002
    [5]LI Wei. 空气孔型光子晶体带隙及波导耦合特性研究[J]. LASER TECHNOLOGY, 2012, 36(2): 225-227. DOI: 10.3969/j.issn.1001-3806.2012.02.021
    [6]ZHANG Yu-zhu, WANG Guang-an, SHEN Zhong-hua, NI Xiao-wu, LU Jian. Influence of intensity on mechanical effect of laser plasma shock wave[J]. LASER TECHNOLOGY, 2007, 31(6): 659-662.
    [7]ZHU Jin-rong, YANG Yan-nan, YANG Bo, SHEN Zhong-hua, LU Jian, NI Xiao-wu. The principle and application of pendulum used in the experiment of impulse coupling between laser and target[J]. LASER TECHNOLOGY, 2007, 31(3): 257-261.
    [8]LI Wu-jun, YANG Ai-fen, WANG Shi-yu, CA De-fang, WENG Jian-guo, GUO Zhen. Study of space coupling technology of fiber bundle coupling LD output beams[J]. LASER TECHNOLOGY, 2006, 30(3): 304-307.
    [9]Li Zhen-hua, Lai Jian-cheng, Wang Zhen-dong, He An-zhi. The application of impulse response function in Monte Carlo simulation of light distribution in biological tissues[J]. LASER TECHNOLOGY, 2001, 25(4): 263-267.
    [10]Zhang Jian, Hollinger Franz. Coupling diode laser into a fibre[J]. LASER TECHNOLOGY, 1996, 20(3): 129-132.

Catalog

    Article views (5) PDF downloads (11) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return