Advanced Search
HE Cheng, LUO Fengguang, LI Bin. Dispersion measuring technique based on second order lowest power of radio frequency signal[J]. LASER TECHNOLOGY, 2017, 41(2): 169-173. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.004
Citation: HE Cheng, LUO Fengguang, LI Bin. Dispersion measuring technique based on second order lowest power of radio frequency signal[J]. LASER TECHNOLOGY, 2017, 41(2): 169-173. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.004

Dispersion measuring technique based on second order lowest power of radio frequency signal

More Information
  • Received Date: March 13, 2016
  • Revised Date: April 04, 2016
  • Published Date: March 24, 2017
  • In order to meet the need of precise compensation of chromatic dispersion in optical fiber link with long distance and high bit rate, channel dispersion measurement technique based on second order lowest power of radio frequency (RF) signal was studied and demonstrated. The chromatic dispersion in optical fiber link was measured by the phase difference between RF signals that loaded to two sidebands of spectrum. By loading RF signal on the transmitter, the periodic relationship between the power of RF signal in the receiver and optical fiber dispersion was obtained. The position of second lowest RF signal power was gotten by simulation of relationship curve between the power of RF signal in the receiver and optical fiber dispersion. The results show that, the dispersion measuring error in this system is in the range of ±10ps/nm. Comparing with the technique based on first order lowest power of RF signal, dispersion measuring technique based on second order lowest power of RF signal can satisfy the need of measuring large fiber dispersion for high chromatic dispersion value.
  • [1]
    QUE L, YIN X. Analysis of dispersion tolerance in optical communication[J].Study of Optical Communications, 2008, 150(6):14-16(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GTXY200806006.htm
    [2]
    CAO X. Optimization of dispersion compensation in optical fiber communication systems[J].Laser Technology, 2014, 38(1):101-104(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201401022.htm
    [3]
    GLENTIS G O, GEORGOULAKIS K, ANGELOPOULOS K. Dispersion compensation of fiber links using pruned volterra equalizers[C]//Advanced Photonics 2015 OSA Technical Digest.New York, USA: Optical Society of America, 2015: JM3A.7.
    [4]
    ZHOU Zh Q, TANG Y L, XIE Ch J. Optimum schemes of dispersion compensation transmission systems using dispersion compensation fibers[J].Laser Technology, 2000, 24(5):265-269(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS200005003.htm
    [5]
    KAWAKAMI H, YOSHIDA E, HUBOTA H, et al. Novel signedchromatic dispersion monitoring technique based on asymmetric waveform distortion in DQPSK receiver[C]//Conference on Opto-electronics & Communications. New York, USA: IEEE, 2008: 1-2.
    [6]
    LI B, LUO F G, ZHOU W, et al. Chromatic dispersion measurement using single sideband spectrum phase difference detection for OOK signal link[J].Optics Express, 2011, 19(25):25583-25592. DOI: 10.1364/OE.19.025583
    [7]
    LI B, LUO F G, TIAN M, et al. Fiber chromatic dispersion measurement by using a novel RF spectrum phase detection based on DSP[J].Optics Communications, 2012, 285(15):3249-3253. DOI: 10.1016/j.optcom.2012.02.085
    [8]
    WESTBROOK P S, EGGLETON B J, RAYBON G, et al. Measurement of residual chromatic dispersion of a 40-Gb/s RZ signal via spectral broadening[J].IEEE Photonics Technology Letters, 2002, 14(3):346-348. DOI: 10.1109/68.986808
    [9]
    VO T D, PELUSI M D, SCHRODER J, et al. Simultaneous multi-impairment monitoring of 640Gb/s signals using photonic chip based RF spectrum analyzer[J].Optics Express, 2010, 18(4):3938-3945. DOI: 10.1364/OE.18.003938
    [10]
    SORIANO R A, HAUSKE F N, GONZALEZ N G, et al. Chromatic dispersion estimation in digital coherent receiver[J].Journal of Lightwave Technology, 2011, 29(11):1627-1637. DOI: 10.1109/JLT.2011.2145357
    [11]
    YAO S, ERIKSSON T A, FU S, et al. Fast and robust chromatic dispersion estimation based on temporal auto-correlation after digital spectrum superposition[J].Optics Express, 2015, 23(12):15418-15430. DOI: 10.1364/OE.23.015418
    [12]
    WANG D, LU C, LAU A P T. Adaptive chromatic dispersion compensation for coherent communication systems using delay-tap sampling technique[J].Photonics Technology Letters, 2011, 23(14):1016-1018. DOI: 10.1109/LPT.2011.2151280
    [13]
    WANG Y, HU S, YAN L, et al. Chromatic dispersion and polarization mode dispersion monitoring for multi-level intensity and phase modulation systems[J].Optics Express, 2007, 15(21):14038-14043. DOI: 10.1364/OE.15.014038
    [14]
    YU C, YANG J. CD and PMD monitoring based on RF spectrum analysis with optical filtering[C]//Communications and Photonics Conference and Exhibition (ACP), 2010 Asia.New York, USA: IEEE, 2010: 419-420.
    [15]
    RIBEIRO V, COSTA L, TEIXEIRA A, et al. Chromatic-dispersion-monitoring scheme using a Mach-Zehnder interferometer and Q-factor calculation[J].Journal of Optical Communications and Networking, 2010, 2(1):10-19. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0219479237/
    [16]
    HE F L, LIU M, DONG Ch P, et al. Research of dispersion characteristics of square-lattice all solid photonic bandgap fibers[J].Laser Technology, 2012, 36(1):90-92(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201201023
    [17]
    LI B. Investigation of dispersion monitoring technology for ultra-high speed optical transmission link[D].Wuhan: Huazhong University of Science and Technology, 2012: 1-116(in Chinese).
  • Related Articles

    [1]MA Chaoqun, ZHANG Ying, WANG Xiaocong, HAN Juhong, CAI He, LIU Xiaoxu, AN Guofei, WANG You. Study on relationship between leakage properties and radio frequency power of an acousto-optic Q-switch[J]. LASER TECHNOLOGY, 2021, 45(3): 298-302. DOI: 10.7510/jgjs.issn.1001-3806.2021.03.005
    [2]ZHANG Yuzhou, JIN Xiaofeng, JIN Xiangdong, YU Xianbin, ZHENG Shilie, CHI Hao, ZHANG Xianmin. Radio-over-fiber transmission based on ultra-long distributed 2-order Raman amplifier[J]. LASER TECHNOLOGY, 2018, 42(3): 300-305. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.003
    [3]LU Xiaochuan, ZHANG Kuohai, TAN Rongqing, HUANG Wei, KE Changjun. Design and experimental study of radio frequency excited rectangle waveguide CO2 laser[J]. LASER TECHNOLOGY, 2017, 41(2): 159-162. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.002
    [4]WANG Zhen, HAN Mengmeng, PENG Hao, TANG Xiahui. Research of adaptive regulation of shaping optics in radio frequency slab CO2 lasers[J]. LASER TECHNOLOGY, 2015, 39(4): 471-475. DOI: 10.7510/jgjs.issn.1001-3806.2015.04.009
    [5]REN Tie-tie, XU Chen, ZHENG Shi-lie, CHI Hao, JIN Xiao-feng, ZHANG Xian-min. Effect of dither tone-based electro-optic modulator bias control on radio-frequency signal[J]. LASER TECHNOLOGY, 2013, 37(6): 773-776. DOI: 10.7510/jgjs.issn.1001-3806.2013.06.015
    [6]DONG Yi, ZHAO Shang-hong, NI Yan-hui, TIAN Xiao-fei, JIANG Fu-wei. 3阶色散对相位整形不归零码传输性能的影响[J]. LASER TECHNOLOGY, 2012, 36(2): 243-246. DOI: 10.3969/j.issn.1001-3806.2012.02.026
    [7]ZHONG Xian-qiong, XIANG An-ping. Modulation instability gain spectrum varying with the incident optical power in case of high-order dispersion[J]. LASER TECHNOLOGY, 2007, 31(4): 364-366,377.
    [8]ZHANG De-ling, CAO Feng-guang, HAN Yan-sheng, WANG You-qing. Study on the relationship between the power and the frequency of CO2 laser excited by RF[J]. LASER TECHNOLOGY, 2005, 29(2): 199-200.
    [9]PENG Yuan-jie, LÜ Bai-da. Second-order moments matrix and M2 factor of optical beams[J]. LASER TECHNOLOGY, 2004, 28(6): 648-651.
    [10]HUANG Xiao-qin, CUI Yi-ping. Study on the third harmonic generation induced by the second-order cascading in nonlinear photonic crystal[J]. LASER TECHNOLOGY, 2004, 28(4): 363-365.
  • Cited by

    Periodical cited type(2)

    1. 姚龙,马聪伟,侯丽丽. 硬件控制的射频电源功率检测电路仿真研究. 真空科学与技术学报. 2023(04): 326-330 .
    2. 王梓骁,罗风光,李斌,胡杭听,杨帅龙. 基于脉冲位置调制系统的偏振模色散监测方案. 激光技术. 2018(01): 1-4 . 本站查看

    Other cited types(0)

Catalog

    Article views (2) PDF downloads (9) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return