Advanced Search
LIU Lifeng, XIAO Shali, QIAN Jiayu. Performance simulation of backlight imaging system based on spherical crystal[J]. LASER TECHNOLOGY, 2017, 41(1): 6-9. DOI: 10.7510/jgjs.issn.1001-3806.2017.01.002
Citation: LIU Lifeng, XIAO Shali, QIAN Jiayu. Performance simulation of backlight imaging system based on spherical crystal[J]. LASER TECHNOLOGY, 2017, 41(1): 6-9. DOI: 10.7510/jgjs.issn.1001-3806.2017.01.002

Performance simulation of backlight imaging system based on spherical crystal

More Information
  • Received Date: December 20, 2015
  • Revised Date: January 12, 2016
  • Published Date: January 24, 2017
  • In order to realize the work of X-ray imaging system and testify the performance of the imaging system, the backlighting imaging system was studied by ray tracing simulation software SHADOW. By the simulation of system parameters(detection position, the size of backlighting source), the results show that the position of detection has a little influence on the relative magnification of the system. The spatial resolution of the X-ray imaging system is higher with the decrease of the size of backlighting source. The imaging system based on spherically bent crystal has high spatial resolution and better performance.
  • [1]
    GLENZER S H, MAcGOWAN B J, MEEZAN N B, et al. Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums[J]. Physical Review Letters, 2011, 106(8):085004. DOI: 10.1103/PhysRevLett.106.085004
    [2]
    SINARS D B, BENNETT G R, WENGER D F, et al. Monochromatic X-ray imaging experiments on the Sandia National Laboratories Z facility (invited)[J]. Review of Scientific Instruments, 2004, 75(10):3672-3677. DOI: 10.1063/1.1779607
    [3]
    SINARS D B, BENNETT G R, WENGER D F, et al. Evaluation of bent-crystal X-ray backlighting and microscopy techniques for the Sandia Z machine[J]. Applied Optics, 2003, 42(19):4059-4071. DOI: 10.1364/AO.42.004059
    [4]
    FUJIOKA S, FUJIWARA T, TANABE M, et al. Monochromatic X-ray radiography for areal-density measurement of inertial fusion energy fuel in fast ignition experiment[J]. Review of Scientific Instruments, 2010, 81(10):10E529. DOI: 10.1063/1.3494383
    [5]
    AGLITSKIY Y, KARASIK M, VELIKOVICH A L, et al.Classical and ablative Richtmyer-Meshkov instability and other ICF relevant plasma flows diagnosed with monochromatic X-ray imaging[J].Physica Scripta, 2008, 132(19):2517-2530. http://adsabs.harvard.edu/abs/2008PhST..132a4021A
    [6]
    BITTER M, HILL K W, STRATTON B, et al. Spatially resolved spectra from a new X-ray imaging crystal spectrometer for measurements of ion and electron temperature profiles (invited)[J]. Review of Scientific Instruments, 2004, 75(10):3660-3665. DOI: 10.1063/1.1791747
    [7]
    KOCH J A, AGLITSKIY Y, BROWN C, et al. 4.5 and 8keV emission and absorption X-ray imaging using spherically bent quartz 203 and 211 crystal[J]. Review of Scientific Instruments, 2003, 74(3):2130-2135. DOI: 10.1063/1.1537448
    [8]
    BENNETT G R, SINARS D B, WENGER D F, et al. High-brightness, high-spatial-resolution, 6.151keV X-ray imaging of inertial confinement fusion capsule implosion and complex hydrodynamics experiments on Sandia's Z accelerator(invited)[J]. Review of Scientific Instruments, 2006, 77(10):10E322. DOI: 10.1063/1.2336433
    [9]
    LIU L F, XIAO S L, QIAN J Y, et al. X-ray backlight imaging in Z-pinch[J]. Nuclear Instruments and Methods in Physics Research Section, 2012, A684(11):93-96. http://d.old.wanfangdata.com.cn/Periodical/wlxb201216047
    [10]
    KOCH J A, LANDEN O L, BARBEE T W, et al. High-energy X-ray microscopy techniques for laser-fusion plasma research at the national ignition facility[J].Applied Optics, 1998, 37(10):1784-1795. DOI: 10.1364/AO.37.001784
    [11]
    KOCH J A, LANDEN O L, HAMMEL B A, et al. Recent progress in high-energy, high-resolution X-ray imaging techniques for application to the National Ignition Facility[J]. Review of Scientific Instruments, 1999, 70(1):525-530. DOI: 10.1063/1.1149271
    [12]
    SANCHEZ del Rio M, ALIANELLI L, PIKUZ T A, et al. Anovel imaging X-ray mocroscope based on a spherical crystal[J]. Review of Scientific Instruments, 2001, 72(8):3291-3303. DOI: 10.1063/1.1379599
    [13]
    BENNETT G R, SMITH I C, SHORES J E, et al. 2~20ns interframe time 2-frame 6.151keV X-ray imaging on the recently upgraded Z accelerator:A progress report[J]. Review of Scientific Instruments, 2008, 79(10):10E914. DOI: 10.1063/1.2956823
    [14]
    LIPSON A, LIPSON S G, LIPSON H. Optical physics[M].4th ed.Cambridge, UK:Cambridge University Press, 2010:325-330.
    [15]
    MCLEAN I S. Electronic imaging in astronomy:detectors and instrumentation[M]. Chichester, UK:Praxis Publishing Ltd., 2008:52-60.
  • Related Articles

    [1]MA Fei, WANG Fang, HUO Shuai. Adaptive deep prior for hyperspectral image super-resolution[J]. LASER TECHNOLOGY, 2024, 48(4): 491-498. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.006
    [2]LIN Qiaowen, YANG Chunhua, LIU Hongmei, KANG Zhancheng. Far-field super-resolution imaging based on microsphere lens[J]. LASER TECHNOLOGY, 2021, 45(6): 686-690. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.002
    [3]GUO Youdong, LING Furi, YAO Jianquan. Super-resolution reconstruction for terahertz images based on gradient transform[J]. LASER TECHNOLOGY, 2020, 44(3): 271-277. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.001
    [4]XIANG Zhicong, ZHANG Chengxiao, BAI Yulei, LAI Wenjing, WANG Qinruo, ZHOU Yanzhou. Adaptive filtering algorithm for high resolution 3-D images[J]. LASER TECHNOLOGY, 2015, 39(5): 697-701. DOI: 10.7510/jgjs.issn.1001-3806.2015.05.024
    [5]HU Jiangtao, HUANG Feng, ZHANG Chu, LIU Bingqi, WANG Yuanbo. Research status of super resolution reconstruction based on compound-eye imaging technology[J]. LASER TECHNOLOGY, 2015, 39(4): 492-496. DOI: 10.7510/jgjs.issn.1001-3806.2015.04.014
    [6]LI Qiang, LIU Zhe, NAN Bingbing, GU Shuyin. Improved image super-resolution reconstruction based neighbor embedding[J]. LASER TECHNOLOGY, 2015, 39(1): 13-18. DOI: 10.7510/jgjs.issn.1001-3806.2015.01.003
    [7]SHEN Gan-song, YE Yu-tang, LI Chang-hai. A high resolution defect detection system for ITO lines[J]. LASER TECHNOLOGY, 2013, 37(1): 24-27. DOI: 10.7510/jgjs.issn.1001-3806.2013.O1.006
    [8]REN Cheng, ZHANG Shu-Han. Research hotspots of distributed optic fiber sensor based on Brillouin scattering[J]. LASER TECHNOLOGY, 2009, 33(5): 473-477,481. DOI: 10.3969/j.issn.1001-3806.2009.05.008
    [9]CHEN Yong, WANG Yu-Lan, ZHOU Ding-fu, LIU Hang. Faint signal processing of lidar based on wavelet multi-resolution analysis[J]. LASER TECHNOLOGY, 2005, 29(3): 278-280,283.
    [10]ZOU Xiao-ping, SU Xian-yu, ZHANG Qi-can. Methods of improving the depth resolution in optical 3-D profilometry with laser sheet[J]. LASER TECHNOLOGY, 2004, 28(2): 196-198,224.

Catalog

    Article views (6) PDF downloads (11) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return