Advanced Search
GE Wen, JI Pengchong, ZHAO Tianchen. Infrared and visible light images fusion of fuzzy logic on NSST domain[J]. LASER TECHNOLOGY, 2016, 40(6): 892-896. DOI: 10.7510/jgjs.issn.1001-3806.2016.06.024
Citation: GE Wen, JI Pengchong, ZHAO Tianchen. Infrared and visible light images fusion of fuzzy logic on NSST domain[J]. LASER TECHNOLOGY, 2016, 40(6): 892-896. DOI: 10.7510/jgjs.issn.1001-3806.2016.06.024

Infrared and visible light images fusion of fuzzy logic on NSST domain

More Information
  • Received Date: August 16, 2015
  • Revised Date: November 02, 2015
  • Published Date: November 24, 2016
  • In order to retain more detail information and reduce the algorithm complexity when fusing the infrared and visible light images, a fusion algorithm based on non-subsampled shearlet transform (NSST) and improved fuzzy logic was proposed to decompose source images sparsely on multi-direction and multi-scale. Low-frequency subband coeffients and high-frequency subband coeffients were obtained. The improved average fusion method of fuzzy Cauchy membership function was adopted in low-frequency subband coeffients. The fusion rule of the combination of energy compatibility and visual sensitivity coefficient was used in high-frequency subband coeffients. Finally, fusion image was obtained after NSST inverse transformation. Experimental results show that the fusion method can not only guarantee the definition of fused image, but also shorten the running time of algorithm.
  • [1]
    LI J Sh, YANG W, ZHANG X M. Infrared image processing, analysis and fusion[M]. Beijing:Science Press, 2009:174-182(in Chinese).
    [2]
    ZHENG W, SUN X Q, LI Zh. Image fusion based on shearlet transform and region characteristics[J]. Laser Technology, 2015, 39(1):50-56(in Chinese).
    [3]
    FENG X, WANG X M. Fusion of infrared and visible images based on Shearlet transform[J].Journal of OptoelectronicsLaser, 2013, 24(2):384-390(in Chinese).
    [4]
    XING X X. Research the image fusion algorithm based on non-subsampled shearlet transform[D]. Changchun:Jilin University, 2014:69-77(in Chinese).
    [5]
    SHI Zh, ZHANU Zh, YUE Y G. Adaptive image fusion algorithm based on Shearlet transform[J]. Acta Photonica Sinica, 2013, 42(1):115-120(in Chinese).
    [6]
    XIE Y H. Multi-focus image fusion by improved shearlet transform[D]. Xi'an:Xidian University, 2013:37-43(in Chinese).
    [7]
    KONG W W, LEI Y J. Technique for image fusion based on NSST domain and human visual characteristics[J]. Journal of Harbin Engineer University, 2013, 34(6):777-782(in Chinese).
    [8]
    ZHANG L, LUO Ch G, ZHANG Y Y, et al. Fusion algorithm of infrared and visible images based on support value transform[J]. Laser Technology, 2015, 39(3):428-431(in Chinese).
    [9]
    LI G, WANG L, ZHANG R B. Infrared and visible image fusion based on feature energy[J]. Opto-Electronic Engineering, 37(3):83-87(in Chinese).
    [10]
    CHEN M Sh, CAI Zh Sh. Study on fusion of visual and infrared images based on NSCT[J]. Laser Optoelectronics Progress, 2015, 52(6):114-119(in Chinese).
    [11]
    HUANG X Q. Infrared and visible image fusion technology based on fuzzy logic[D]. Chongqing:Chongqing University, 2012:39-41(in Chinese).
    [12]
    ZHANG Y K. Research on shearlet-based SAR/IR image fusion[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011:28-41(in Chinese).
    [13]
    WANG L Q, AN J W. Image fusion based on nonsubsampled Contourlet transform[J]. Computer Engineering and Application, 2008, 44(12):189-191(in Chinese).
    [14]
    DO M N, VETTERLI M. Contourlets:a directional multiresolution image representation[C]//International Conference on Image Processing.New York,USA:IEEE, 2002:357-360(in Chinese).
    [15]
    EASLEYG R, LABAT E D, LIM W Q. Optimally sparse image representations using shearlets[C]//Fortieth Asilomar Conference on Signal, Systems and Computers. New York, USA:IEEE, 2006:974-978.
    [16]
    YUAN Y H, ZHANG J J, CHANG B K, et al. Objective quality evaluation of visible and infrared color fusion image[J]. Optical Engineering, 2011, 50(3):33-45.
  • Related Articles

    [1]OUYANG Yuxuan, ZHANG Rongfen, LIU Yuhong, PENG Yaopan. Research on indoor visual aid algorithms for visually impaired people[J]. LASER TECHNOLOGY, 2025, 49(2): 166-174. DOI: 10.7510/jgjs.issn.1001-3806.2025.02.002
    [2]MA Jiafei, WANG Guan, YAO Binghui, GU Chun, XU Lixin. Visual perception of human eyes at different ages[J]. LASER TECHNOLOGY, 2023, 47(2): 260-266. DOI: 10.7510/jgjs.issn.1001-3806.2023.02.016
    [3]SUO Wenkai, HU Wengang, BAN Liming, LIN Yuanhe, QIAN Le. Research on flight control of quadrotor UAV based on visual image[J]. LASER TECHNOLOGY, 2020, 44(4): 451-458. DOI: 10.7510/jgjs.issn.1001-3806.2020.04.010
    [4]QIAN Xinlei, KONG Yong, DU Tongyao, XU Guo, XU Xueying. Study on full-sensitivity to vibration of phase sensitive optical time-domain reflectometers[J]. LASER TECHNOLOGY, 2019, 43(5): 608-613. DOI: 10.7510/jgjs.issn.1001-3806.2019.05.004
    [5]WANG Fubin, LIU Yang, CHENG Yue, LIU Haitao, XU Ao. Six-DOF attitude transform visual experiment platform and its application[J]. LASER TECHNOLOGY, 2018, 42(6): 751-757. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.005
    [6]SUN Yuejiao, LEI Wuhu, HU Yihua, ZHAO Nanxiang, REN Xiaodong. Rapid ship detection in remote sensing images based on visual saliency model[J]. LASER TECHNOLOGY, 2018, 42(3): 379-384. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.017
    [7]YANG Shulian, SU Yuanbin, HE Jianting, WEI Qinqin, SHENG Cuixia, SHEN Jin. Study of measurement accuracy of position sensitive detectors[J]. LASER TECHNOLOGY, 2014, 38(6): 830-834. DOI: 10.7510/jgjs.issn.1001-3806.2014.06.023
    [8]TANG Min, WANG Hui-nan. Computer processing and visualization of confocal microscopy images[J]. LASER TECHNOLOGY, 2007, 31(5): 558-560.
    [9]Sun Ronglu, Guo lixin, Dong Shangli, Yang Dezhuang. Study on laser cladding of NiCrBSi (Ti)-TiC metal-ceramiccomposite coatings on titanium alloy[J]. LASER TECHNOLOGY, 2001, 25(5): 343-346.
    [10]Chen Kai, Wu Wenpeng, Zheng Shunxuan. Study on ammonia-sensitive optical property of ZnO/TiO2 multi-layer thin film[J]. LASER TECHNOLOGY, 2001, 25(3): 209-213.
  • Cited by

    Periodical cited type(7)

    1. 刘凯,王慧琴,吴萌,相建凯,卢英. 基于提升小波的古铜镜X光图像融合方法研究. 激光技术. 2020(01): 113-118 . 本站查看
    2. 王艳,杨艳春,党建武,王阳萍. 非下采样Contourlet变换域内结合模糊逻辑和自适应脉冲耦合神经网络的图像融合. 激光与光电子学进展. 2019(10): 121-129 .
    3. 陈智勇,孙嘉. 区域分割下序列红外图像智能融合算法研究. 激光杂志. 2019(06): 74-77 .
    4. 蔡怀宇,卓励然,朱攀,黄战华,武晓宇. 基于非下采样轮廓波变换和直觉模糊集的红外与可见光图像融合. 光子学报. 2018(06): 225-234 .
    5. 胡文,王小华,朱怀毅. LNSST域灰度突变度的红外与可见光图像融合. 红外技术. 2018(06): 563-568 .
    6. 高晶,陈晓臻. 基于AR动态图像的人物动作捕捉技术研究. 现代电子技术. 2018(08): 144-146+150 .
    7. 郭佩瑜,张宝华. 基于引导滤波和模糊算法的红外背景抑制算法. 激光技术. 2018(06): 854-858 . 本站查看

    Other cited types(6)

Catalog

    Article views (5) PDF downloads (16) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return