Advanced Search
GE Wen, JI Pengchong, ZHAO Tianchen. Infrared and visible light images fusion of fuzzy logic on NSST domain[J]. LASER TECHNOLOGY, 2016, 40(6): 892-896. DOI: 10.7510/jgjs.issn.1001-3806.2016.06.024
Citation: GE Wen, JI Pengchong, ZHAO Tianchen. Infrared and visible light images fusion of fuzzy logic on NSST domain[J]. LASER TECHNOLOGY, 2016, 40(6): 892-896. DOI: 10.7510/jgjs.issn.1001-3806.2016.06.024

Infrared and visible light images fusion of fuzzy logic on NSST domain

More Information
  • Received Date: August 16, 2015
  • Revised Date: November 02, 2015
  • Published Date: November 24, 2016
  • In order to retain more detail information and reduce the algorithm complexity when fusing the infrared and visible light images, a fusion algorithm based on non-subsampled shearlet transform (NSST) and improved fuzzy logic was proposed to decompose source images sparsely on multi-direction and multi-scale. Low-frequency subband coeffients and high-frequency subband coeffients were obtained. The improved average fusion method of fuzzy Cauchy membership function was adopted in low-frequency subband coeffients. The fusion rule of the combination of energy compatibility and visual sensitivity coefficient was used in high-frequency subband coeffients. Finally, fusion image was obtained after NSST inverse transformation. Experimental results show that the fusion method can not only guarantee the definition of fused image, but also shorten the running time of algorithm.
  • [1]
    LI J Sh, YANG W, ZHANG X M. Infrared image processing, analysis and fusion[M]. Beijing:Science Press, 2009:174-182(in Chinese).
    [2]
    ZHENG W, SUN X Q, LI Zh. Image fusion based on shearlet transform and region characteristics[J]. Laser Technology, 2015, 39(1):50-56(in Chinese).
    [3]
    FENG X, WANG X M. Fusion of infrared and visible images based on Shearlet transform[J].Journal of OptoelectronicsLaser, 2013, 24(2):384-390(in Chinese).
    [4]
    XING X X. Research the image fusion algorithm based on non-subsampled shearlet transform[D]. Changchun:Jilin University, 2014:69-77(in Chinese).
    [5]
    SHI Zh, ZHANU Zh, YUE Y G. Adaptive image fusion algorithm based on Shearlet transform[J]. Acta Photonica Sinica, 2013, 42(1):115-120(in Chinese).
    [6]
    XIE Y H. Multi-focus image fusion by improved shearlet transform[D]. Xi'an:Xidian University, 2013:37-43(in Chinese).
    [7]
    KONG W W, LEI Y J. Technique for image fusion based on NSST domain and human visual characteristics[J]. Journal of Harbin Engineer University, 2013, 34(6):777-782(in Chinese).
    [8]
    ZHANG L, LUO Ch G, ZHANG Y Y, et al. Fusion algorithm of infrared and visible images based on support value transform[J]. Laser Technology, 2015, 39(3):428-431(in Chinese).
    [9]
    LI G, WANG L, ZHANG R B. Infrared and visible image fusion based on feature energy[J]. Opto-Electronic Engineering, 37(3):83-87(in Chinese).
    [10]
    CHEN M Sh, CAI Zh Sh. Study on fusion of visual and infrared images based on NSCT[J]. Laser Optoelectronics Progress, 2015, 52(6):114-119(in Chinese).
    [11]
    HUANG X Q. Infrared and visible image fusion technology based on fuzzy logic[D]. Chongqing:Chongqing University, 2012:39-41(in Chinese).
    [12]
    ZHANG Y K. Research on shearlet-based SAR/IR image fusion[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011:28-41(in Chinese).
    [13]
    WANG L Q, AN J W. Image fusion based on nonsubsampled Contourlet transform[J]. Computer Engineering and Application, 2008, 44(12):189-191(in Chinese).
    [14]
    DO M N, VETTERLI M. Contourlets:a directional multiresolution image representation[C]//International Conference on Image Processing.New York,USA:IEEE, 2002:357-360(in Chinese).
    [15]
    EASLEYG R, LABAT E D, LIM W Q. Optimally sparse image representations using shearlets[C]//Fortieth Asilomar Conference on Signal, Systems and Computers. New York, USA:IEEE, 2006:974-978.
    [16]
    YUAN Y H, ZHANG J J, CHANG B K, et al. Objective quality evaluation of visible and infrared color fusion image[J]. Optical Engineering, 2011, 50(3):33-45.
  • Related Articles

    [1]YANG Zihe, ZHANG Peng, ZHANG Zhening. Design and feasibility study of space-based laser debris removal system[J]. LASER TECHNOLOGY, 2024, 48(1): 1-7. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.001
    [2]ZHANG Meng, FANG Yingwu, ZHANG Guangpeng. Numerical simulation of dynamic response for aluminum target debris irradiated by nanosecond pulse laser[J]. LASER TECHNOLOGY, 2023, 47(4): 541-546. DOI: 10.7510/jgjs.issn.1001-3806.2023.04.015
    [3]LIU Yaping, PENG Xujin, ZHAO Gang, TAO Gang, GAO Heng, BAI Yang, TANG Wei, LUO Jieping. The analysis of thermal design and its simulation for air cooled YAG laser with the repetition of 50Hz[J]. LASER TECHNOLOGY, 2021, 45(6): 735-739. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.010
    [4]WANG Shun, CHENG Gaofeng, LI Qiang, YANG Jianchang, YAN Zongqun. Simulation design of laser transmitting telescope[J]. LASER TECHNOLOGY, 2019, 43(1): 131-136. DOI: 10.7510/jgjs.issn.1001-3806.2019.01.026
    [5]ZHANG Jinghao, ZHENG Yongchao, SHANG Weidong, GONG Zizheng. Research of space-based photon counting laser detection for space debris[J]. LASER TECHNOLOGY, 2017, 41(3): 312-317. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.002
    [6]WEN Quan, ZHAO Shanhong, FANG Yingwu, YANG Liwei, WANG Yi, DING Xifeng, LIN Tao. Research on de-orbiting mechanism of space debris driven by ground-based laser[J]. LASER TECHNOLOGY, 2017, 41(3): 307-311. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.001
    [7]CHEN Yongqing, ZHANG Chentao, ZHANG Jianhuan. Simulation of temperature field of graphene substrate fabricated by laser chemical vapor deposition[J]. LASER TECHNOLOGY, 2015, 39(5): 648-653. DOI: 10.7510/jgjs.issn.1001-3806.2015.05.013
    [8]YANG Ren-fu, ZHU Xiao-li, CHEN Jun-ning. Error simulation of Ronchi gratings[J]. LASER TECHNOLOGY, 2012, 36(1): 37-41. DOI: 10.3969/j.issn.1001-3806.2012.01.011
    [9]DONG Ji-hui, HU Qi-quan. Detecting space debris with lidar[J]. LASER TECHNOLOGY, 2007, 31(2): 185-187,191.
    [10]Song Zhengfang. Atmospheric attenuation of 1.06μm laser propagating in a slant path[J]. LASER TECHNOLOGY, 1997, 21(6): 343-345.
  • Cited by

    Periodical cited type(3)

    1. 李小来,杨世强,姚俊,方春华,沈彪,张曼. 基于激光点云数据的输电线路高压电塔提取方法研究. 电工材料. 2025(01): 70-73 .
    2. 朱赞,姚钘,王建琦,李阳,龙诗科. 三维激光扫描技术应用于机翼微变形检测. 测绘通报. 2023(05): 115-119 .
    3. 黄俊达,许柔娜,唐思瑶. 基于矢量化电力线的架空线路树障快速分析方法. 南方能源建设. 2023(06): 146-152 .

    Other cited types(1)

Catalog

    Article views (5) PDF downloads (16) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return