Advanced Search
WU Yiheng, HU Jianxia, FANG Yuntuan. All-optical diode based on coupling of microcavity modes and optical Tamm states[J]. LASER TECHNOLOGY, 2016, 40(1): 11-14. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.003
Citation: WU Yiheng, HU Jianxia, FANG Yuntuan. All-optical diode based on coupling of microcavity modes and optical Tamm states[J]. LASER TECHNOLOGY, 2016, 40(1): 11-14. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.003

All-optical diode based on coupling of microcavity modes and optical Tamm states

More Information
  • Received Date: January 06, 2015
  • Revised Date: February 26, 2015
  • Published Date: January 24, 2016
  • In order to achieve all-optical diode function, a 1-D photonic crystal nonlinear microcavity was designed with metal films in different thickness coated on both sides of the photonic crystal. Transmission properties of the microcavity were studied with the nonlinear transfer matrix method. The results show that structure coupling both the nonsymmetric optical Tamm states and nonlinear microcavity shows bistable states with all-optical diode feature, and that the position of hysteresis loop is related with incident direction. The diode performance is dependent on the thickness of nonlinear microcavity and the ratio of thickness of the metal films on both sides. The design provides a reference for the optimization design of all-optical diodes.
  • [1]
    DONG H Y, WANG J, CUI T J. One-way Tamm plasmon-polaritons on the interface of magnetophotonic crystals and conducting metal oxides[J]. Physical Review, 2013, B87(4):045406.
    [2]
    KHANIKAEV A B, BARYSHEV A V, INOUE M,et al. One-way electromagnetic Tamm states in magnetophotonic structures[J]. Applied Physics Letters, 2009, 95(1):011101.
    [3]
    HWANG J, SONG M H, PARK B, et al. Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions[J]. Nature Mater, 2005, 4(5):383-387.
    [4]
    XUE C H, JIANG H T, CHEN H. Highly efficient all-optical diode action based on light-tunneling heterostructures[J]. Optics Express, 2010,18(7):7479-7487.
    [5]
    MINGALEEV S F, KIVSHAR Y S. Nonlinear transmission and light localization in photonic crystal wave guides[J]. Journal of the Optical Society of America, 2002, B19(9):2241-2249.
    [6]
    GEVORGYAN A H, HARUTYUNYAN M Z. Chiral photonic crystals with an anisotropic defect layer[J]. Physical Review, 2007, E76(3):031701.
    [7]
    GALLO K, ASSANTO G, PARAMESWARAN K R, et al. All-optical diode in a periodically poled lithium niobate wave guide[J]. Applied Physics Letters, 2001, 79(3):314-316.
    [8]
    XUE C H, JIANG H T, CHEN H. Nonlinear resonance-enhanced excitation of surface plasmon polaritons[J]. Optics Letters, 2011, 36(6):855-877.
    [9]
    NAVA R, TAGVEN~A-MARTNEZ J, del RO J A, et al. Perfect light transmission in Fibonacci arrays of dielectric multilayers[J]. Journal of Physics-condensed Matter, 2009, 21(15):155901.
    [10]
    ZHUKOVSKY S V, SMIRNOV A G. All-optical diode action in asymmetric nonlinear photonic multilayers with perfect transmission resonances[J]. Physical Review Applied, 2011, 83(2):023818.
    [11]
    GRIGORIEV V, BIANCALANA F. Bistability, multistability and non-reciprocal light propagation in Thue-Morse multilayered structures[J]. New Journal of Physics, 2010, 12(5):053041.
    [12]
    GRIGORIEV V, BIANCALANA F. Nonreciprocal switching thresholds in coupled nonlinear microcavities[J]. Optics Letters, 2011, 36(11):2131-2133.
    [13]
    RHODES C, FRANZEN S, MARIA J P,et al. Surface plasmon resonance in conducting metal oxides[J]. Journal of Applied Physics, 2006, 100(5):054905.
    [14]
    FANG Y T, YANG L X, KONG W, et al. Tunable coupled states of a pair of Tamm plasmon polaritons and a microcavity mode[J]. Journal of Optics, 2013, 15(12):125703.
  • Related Articles

    [1]LIU Yuxuan, XIE Jianda. Progress in research of polymer optical fiber communication and sensing[J]. LASER TECHNOLOGY, 2024, 48(4): 505-520. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.008
    [2]LI Pin, SUN Yuedong, TAN Wensheng, LIU Huixia, WANG Xiao. Laser transmission welding of heterogeneous polymers assisted by infrared heating[J]. LASER TECHNOLOGY, 2019, 43(3): 307-313. DOI: 10.7510/jgjs.issn.1001-3806.2019.03.004
    [3]CHU Zhuangzhuang, YOU Libing, WANG Qingsheng, YIN Guangyue, CHEN Liang, FANG Xiaodong. Progress in fabrication of polymer optical fiber gratings[J]. LASER TECHNOLOGY, 2018, 42(1): 11-18. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.003
    [4]KONG Yan, ZHANG Xiu-mei, GAO Shu-mei. Conversion efficiency modulation of difference-frequency generation based on electro-optic effect in lithium niobate crystal[J]. LASER TECHNOLOGY, 2012, 36(6): 836-839. DOI: 10.3969/j.issn.1001-3806.2012.06.031
    [5]WEN Shang-sheng, PENG Jun-biao, CAO-Yong. Measurement of the charge carrier mobility of polymer with the time-of-flight technique[J]. LASER TECHNOLOGY, 2005, 29(3): 301-303.
    [6]QI Heng, CHEN Tao. Research of polymers used in fabrication of biochip[J]. LASER TECHNOLOGY, 2005, 29(2): 138-141.
    [7]HAN Xiao-xing, ZHU Da-qing, NING Na, JIN Xi. Investigation on the preparation of advanced polymer thin film for waveguides[J]. LASER TECHNOLOGY, 2004, 28(3): 315-318.
    [8]LIU Yong-jun, ZHU Da-qing, YANG Zhen-yu, LU Dong-sheng. Model of effective refractive indices of nanoporous polymer films[J]. LASER TECHNOLOGY, 2004, 28(2): 211-213.
    [9]Zhang Lin, Lou Qihong, Wei Yunrong, Dong Jingxing, Li Tiejun, Hang Feng. Micropatterns on polymers etched by excimer lasers[J]. LASER TECHNOLOGY, 2002, 26(2): 94-96.
    [10]Jia Zhen-hong. Fabrication of grating coupler on polymer PMMA/DR1 film by photobleaching[J]. LASER TECHNOLOGY, 2000, 24(3): 171-173.

Catalog

    Article views (3) PDF downloads (15) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return