Advanced Search
WEI Yong, ZHU Yanying. Analysis of phase change of Laguerre-Gaussian vortex beam during propagation[J]. LASER TECHNOLOGY, 2015, 39(5): 723-726. DOI: 10.7510/jgjs.issn.1001-3806.2015.05.029
Citation: WEI Yong, ZHU Yanying. Analysis of phase change of Laguerre-Gaussian vortex beam during propagation[J]. LASER TECHNOLOGY, 2015, 39(5): 723-726. DOI: 10.7510/jgjs.issn.1001-3806.2015.05.029

Analysis of phase change of Laguerre-Gaussian vortex beam during propagation

More Information
  • Received Date: July 27, 2014
  • Revised Date: August 27, 2014
  • Published Date: September 24, 2015
  • In order to study the phase characteristics of Laguerre-Gaussian vortex beam during propagation, the vortex beam was obtained by means of spiral phase plates. Based on Fresnel diffraction integral formula, the phase change of the beam in the propagation process and the stability of vortex beam phase singularities at integer order and fractional order were studied by theoretical derivation and numerical simulation. When the beam was transmitted a certain distance, phase contours of the light field on the observation plane became from diverging rays into petal-shaped arcs. The results show that if topological charge of the vortex beam is integer order, the phase singularity of the beam assumes stability in the propagation process. The phase singularity of fractional order is unstable, intensity distribution on the observation plane is obvious asymmetric and the central darkness gradually disappears. The research results supply theoretical foundation and practical guidance for the application of optical micro manipulation and information coding techniques.
  • [1]
    YIN J P, LIU N C, XIA Y, et al. Generation of hollow laser beams and their applications in mordern optics[J]. Progress in Physics, 2004, 24(3):336-380 (in Chinese).
    [2]
    ZHAN Q W. Properties of circularly polarized vortex beams[J]. Optics Letters, 2006, 37(7):867-869.
    [3]
    JIA P, YANG Y, MIN C J, et al. Sidelobe-modulated optical vortices for free-space communication[J]. Optics Letters, 2013, 38(4):588-590.
    [4]
    ZHU Y Y, CHEN Z T, LIU C S, et al. Theoretical research of interference light field of off-axis vortex beam[J]. Journal of OptoelectronicsLaser, 2013, 24(5):1012-1017 (in Chinese).
    [5]
    LI L. Research of activity decay of red blood cells in static magnetic field with optical tweezers[J]. Laser Technology, 2013, 37(6):799-802 (in Chinese).
    [6]
    LI G, ZHANG S, LSENHOWER L, et al. Crossed vortex bottle beam trap for single-atom qubits[J]. Optics Letters, 2012, 37(5):851-853.
    [7]
    HE C, HUANG S J. A new-type composite vortex beam generated by coaxial superposition[J]. Journal of OptoelectronicsLaser, 2013, 24(12):2440-2445 (in Chinese).
    [8]
    GAO H F, REN Y X, LIU W W, et al. Rotation dynamics of yeast cell in vortex optical tweezers[J]. Chinese Journal of Lasers, 2011, 38(4):1-6 (in Chinese).
    [9]
    BAJKAL Y. Analysis of reciprocity of cos-Gaussian and cosh-Gaussian laser beams in a turbulent atmosphere[J]. Optics Express, 2004, 12(20): 4659-4674.
    [10]
    LIU M. Novel method to detect the orbital angular momentum in optical vortex beams[J]. Acta Optica Sinica, 2013, 33(3):1-7 (in Chinese).
    [11]
    CANG J, LIU X. Average capacity of free-space optical systems for a Laguerre-Gaussian beam propagating through non-Kolmogorov turbulence[J]. Optics Letters, 2011, 36(17):1-7 (in Chinese).
    [12]
    MENG X J, ZHU Y Y, CHEN Z T, et al. Properties of vortex beams with plane beam oblique incidence of fork-shaped grating[J]. Chinese Journal of Lasers, 2013, 40(2):1-5 (in Chinese).
    [13]
    BRZOBOHATY O. High quality quasi-Bessel beam generated by round-tip axicon[J]. Optics Express, 2008, 16(17): 12688-12700.
    [14]
    KOTLYAR V V, KOVALEV A A, SKIDANOV R V, et al. Diffraction of a finite-radius plane wave and a Gaussian beam by a helical axicon and a spiral phase plate[J]. Journal of the Optical Society of America, 2007, 24(7):1955-1964.
    [15]
    HE C, HUANG S J, GU T T, et al. Study of optical ring lattice array based on computer-generated holography[J]. Chinese Journal of Lasers, 2014, 41(3):193-198 (in Chinese).
  • Cited by

    Periodical cited type(8)

    1. 孟惠,王明军,宁铎,任神河. 拉盖尔-高斯光束在拓扑绝缘体分层介质薄膜的相位分布. 激光与光电子学进展. 2022(05): 306-311 .
    2. 杜娇,段美玲,张秀清,赵慧芳,崔文丽. 部分相干光束在生物组织中的传输行为. 光电子·激光. 2022(09): 1001-1008 .
    3. 位毅帆. 空心光束的产生及其在现代光学中的应用. 内江科技. 2019(02): 63+32 .
    4. 靳龙,张兴强. 圆形周期介质内艾里光束的传输特性. 激光技术. 2019(03): 432-436 . 本站查看
    5. 黄石明,聂建业,张蓉竹. 偏振方向对涡旋光束产生的影响. 强激光与粒子束. 2018(07): 15-19 .
    6. 汪慧超,胡阿健,陈培锋. 空间光调制器产生拉盖尔-高斯光束方法研究. 激光技术. 2017(03): 447-450 . 本站查看
    7. 李瑶,莫伟成,杨振刚,刘劲松,王可嘉. 利用超表面天线阵列产生太赫兹涡旋光束. 激光技术. 2017(05): 644-648 . 本站查看
    8. 张虹霞,严云富. 无源光接入网络中前向纠错编码技术. 激光杂志. 2017(10): 152-155 .

    Other cited types(14)

Catalog

    Article views (3) PDF downloads (6) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return