Advanced Search
CHEN Hai-ping, ZHAO Bin. Space coordinate measurement based on theodolites and rangefinders[J]. LASER TECHNOLOGY, 2013, 37(1): 77-81. DOI: 10.7510/jgjs.issn.1001-3806.2013.01.019
Citation: CHEN Hai-ping, ZHAO Bin. Space coordinate measurement based on theodolites and rangefinders[J]. LASER TECHNOLOGY, 2013, 37(1): 77-81. DOI: 10.7510/jgjs.issn.1001-3806.2013.01.019

Space coordinate measurement based on theodolites and rangefinders

More Information
  • Received Date: April 15, 2012
  • Revised Date: June 15, 2012
  • Published Date: January 24, 2013
  • In order to overcome shortcomings,such as blind spots and high expense,in space coordinate measurement with a total station and laser tracker,a space coordinate measurement method was put forward based on theodolites and rangefinders.The distance of a few target dots along the laser beam were measured with a laser rangefinder,at the same time these target dots were observed with a theodolite so that the horizontal angle and zenith angle of each target point were obtained.In the following data processing,the public plane,determined by the rays consisting of each target point and the origin of the theodolite,was calculated with the least square method,then these rays were projected to the public plane to obtain the corresponding projection rays,and the coordinates of each target dot were calculated based on these projection rays and the distances between target dots.Finally,the expression of the space line indicating the laser beam was fitted.Known the equation of the space line,the coordinates of to-be-tested dots in the theodolite coordinate system can be calculated if only measuring the distance between the dot and laser rangefinder.This measurement gives access to multi-point dynamic non-contact space coordinate measurement,which is difficult for a total station and laser tracker to achieve.
  • Related Articles

    [1]PENG Zhengwei, ZHANG Shenghai, MIAO Jinsong, CHEN Wenbo, YU Yang, WEI Zhengtong. Research on diameter measurement technology of optical microfiber[J]. LASER TECHNOLOGY, 2021, 45(5): 596-600. DOI: 10.7510/jgjs.issn.1001-3806.2021.05.010
    [2]FU Yonghong, LI Jin, FU Hao, ZHANG Hangcheng, PAN Caiyun. Numerical simulation and experimental study about fiber laser texture on 45# steel[J]. LASER TECHNOLOGY, 2017, 41(6): 909-915. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.028
    [3]FU Yonghong, GU Yali, KANG Zhengyang, WANG Haibo, LI Yudi. Experimental research of laser texturing of cemented carbide[J]. LASER TECHNOLOGY, 2016, 40(4): 512-515. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.012
    [4]YU Li-fang, YE Yu-tang, WU Jian-ping. Defect detection and control of a laser conditioning system for large diameter optical film[J]. LASER TECHNOLOGY, 2012, 36(2): 188-190. DOI: 10.3969/j.issn.1001-3806.2012.02.010
    [5]LUO Zhi-gao, FAN Bin-bin, GUO Xiao-dong, CHEN Bao-lei, PANG Chao-li. The effect of laser texturing on tribology characteristics of drawing die surface[J]. LASER TECHNOLOGY, 2010, 34(2): 161-163,209. DOI: 10.3969/j.issn.1001-3806.2010.02.005
    [6]MI Tao, LI Cheng-dong, NI Jian, FU Yong-hong, HUA Xi-jun. Laser texturing of spherical cap slight protuberance profile on mould & die surface[J]. LASER TECHNOLOGY, 2009, 33(5): 500-502. DOI: 10.3969/j.issn.1001-3806.2009.05.026
    [7]DUAN Jun. Present and future development of laser micro-processing on disk substrate——laser texture[J]. LASER TECHNOLOGY, 2006, 30(5): 490-493.
    [8]He Yunfeng, Du Dong, Liu Ying, Sui Bo, Xiong Lijuan. Parametric analysis of pulsed Nd:YAG laser texturing process[J]. LASER TECHNOLOGY, 2003, 27(1): 8-10,13.
    [9]Zhu Daqing, Zuo Duluo, Li Shimin, Zhou Xinjun, Liu Jiangong. Studies on the microstructure of the textured point on laser textured huge rolls[J]. LASER TECHNOLOGY, 2000, 24(1): 24-26.
    [10]Li Chengzhi. Study on dynamically measuring outer diameter with a scanning laser[J]. LASER TECHNOLOGY, 1994, 18(5): 303-305.
  • Cited by

    Periodical cited type(11)

    1. 孟祥艳,张欣,张峰,赵黎,李帅. 融合迁移特征学习的生物启发网络用于可见光成像室内位置感知方法. 中国激光. 2023(10): 176-183 .
    2. 赵黎,刘海涛,陈俊波. 基于采用天牛须搜索算法优化神经网络的可见光室内定位方法. 光通信技术. 2022(02): 1-7 .
    3. 张慧颖,王凯,于海越,牟昊. 基于自适应Levy飞行的黄金正弦可见光定位研究. 激光技术. 2022(04): 519-524 . 本站查看
    4. 赵黎,韩中达,张峰. 基于神经网络的可见光室内立体定位研究. 中国激光. 2021(07): 145-154 .
    5. 张雨桐,赵黎,张峰. 基于小波变换的可见光OFDM通信系统性能优化. 激光技术. 2020(02): 261-265 . 本站查看
    6. 宋素真,桂林,杨晨,郑艺璇,陈璟,朱玉绚. 可见光通信应用于安全支付有效区域的研究. 上海第二工业大学学报. 2020(03): 207-212 .
    7. 陈立胜,于丽娜. 基于虚拟光学的室内三维空间视觉合理性设计. 激光杂志. 2020(11): 183-187 .
    8. 陈怡然,廖宁. 基于激光图像处理技术的目标定位系统. 激光杂志. 2019(08): 77-80 .
    9. 朱瑞晨,曹宇彤,索朝举,刘洋洋,刘伟伟. 基于LED可见光技术的室内车辆定位系统设计. 电脑知识与技术. 2019(22): 228-230 .
    10. 左肖,邵建华,沈宏杰,安爽. 自然环境光下的室内可见光定位系统. 激光杂志. 2019(11): 7-11 .
    11. 杨康,赵黎. 基于VLC和PLC的智慧照明系统. 激光杂志. 2019(12): 72-75 .

    Other cited types(8)

Catalog

    Article views PDF downloads Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return