Advanced Search
DENG Lei-min, DUAN Jun, YANG Huan, DU Min. Simulation of transmission characteristics of focused laser inside KDP crystal[J]. LASER TECHNOLOGY, 2013, 37(1): 72-76. DOI: 10.7510/jgjs.issn.1001-3806.2013.01.018
Citation: DENG Lei-min, DUAN Jun, YANG Huan, DU Min. Simulation of transmission characteristics of focused laser inside KDP crystal[J]. LASER TECHNOLOGY, 2013, 37(1): 72-76. DOI: 10.7510/jgjs.issn.1001-3806.2013.01.018

Simulation of transmission characteristics of focused laser inside KDP crystal

More Information
  • Received Date: May 14, 2012
  • Revised Date: May 20, 2012
  • Published Date: January 24, 2013
  • Laser producing 3-D microstructures inside KDP crystals is an effective way to suppress the transverse stimulated Raman scattering(TSRS) effect in high power lasers.The transmission characteristics of focused laser inside KDP crystal was simulated to investigate the feasibility of laser making 3-D microstructures and the effects of laser parameters on the machining accuracy,efficiency and success rates.The effects of the focus peak power density,spot distortion and the migration are the main factors affecting the machining accuracy and causing crystal fragmentation.The size and shape of the e-polarization focus will distort and its peak power density decreases rapidly with the increasing of angle between incident laser and crystal optical axis.The results show that the effect of the e-polarization laser will increase the processing efficiency more than twice when the angle is less than 15 and can be neglected in the low-energy or cause crystal fragmentation easily in high-energy when the angle is greater than 30.
  • Related Articles

    [1]HAN Xiaohua, DENG Leimin, WU Baoye, BAI Keqiang, ZHOU Xiang, LIU Peng, DUAN Jun. Process study on KDP crystal polished by picosecond laser[J]. LASER TECHNOLOGY, 2018, 42(2): 166-171. DOI: 10.7510/jgjs.issn.1001-3806.2018.02.005
    [2]LIU Ziang, SHI Wei, WANG Cheng. Study on numerical simulation of residual stresses induced by laser shock processing[J]. LASER TECHNOLOGY, 2017, 41(1): 1-5. DOI: 10.7510/jgjs.issn.1001-3806.2017.01.001
    [3]WANG Jian-min, ZHOU Qun-li, JIANG Yin-fang, ZHANG Meng-lei, CHENG Ke-sheng, WAN Li, ZHAO Yan. Numerical simulation of sheet deformation by hollow laser shock[J]. LASER TECHNOLOGY, 2012, 36(6): 727-730. DOI: 10.3969/j.issn.1001-3806.2012.06.004
    [4]DAI Bao-jiang, CHEN Feng, ZHANG Dong-shi, DU Guang-qing, MENG Xiang-wei. 飞秒激光制备波导型光合波器的数值模拟[J]. LASER TECHNOLOGY, 2012, 36(2): 251-254,264. DOI: 10.3969/j.issn.1001-3806.2012.02.029
    [5]LI Xiao-feng, ZHOU Xin, LU Xi, WU Bo, YANG Ze-hou, CHEN Yong, ZHOU Ding-fu, HOU Tian-jin. Numerical simulation and analysis of laser transmitting characteristic in smog[J]. LASER TECHNOLOGY, 2010, 34(3): 381-384. DOI: 10.3969/j.issn.1001-3806.2010.03.027
    [6]YAN Ming-bao, ZHOU Ping, WANG Hai-long. Numerical analysis of transmission properties of SiO2/Si photonic crystal[J]. LASER TECHNOLOGY, 2009, 33(1): 50-52,70.
    [7]LIU Hou-tong, WANG Zhen-zhu, LI Chao, HUANG Wei, ZHOU Jun. Numerical simulation analysis for detectability of spaceborne lidars[J]. LASER TECHNOLOGY, 2008, 32(6): 614-617.
    [8]XIONG Ji-chuan, LAN Ge, WAN Yong. Numerically modeling and optimizing pulse-shape of Cr4+:YAG Q-switched lasers[J]. LASER TECHNOLOGY, 2008, 32(4): 430-433.
    [9]LIU Shun-hong, JI Qiao-jie, YANG Jing. Numerical simulation on laser bending of steel tubes[J]. LASER TECHNOLOGY, 2006, 30(4): 355-359.
    [10]Cai Bangwei, Bi Guojiang, Yang Chunlin. Study of orientation way for large-aperture KDP crystal[J]. LASER TECHNOLOGY, 1999, 23(1): 1-3.

Catalog

    Article views (10) PDF downloads (7) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return