Advanced Search
JIANG Zhiheng, SHI Yan, LIU Jia, LI Lingyu, CHEN Kuiming. Microstructure and properties of laser deposition coating assisted by magnetic field[J]. LASER TECHNOLOGY, 2019, 43(2): 154-160. DOI: 10.7510/jgjs.issn.1001-3806.2019.02.002
Citation: JIANG Zhiheng, SHI Yan, LIU Jia, LI Lingyu, CHEN Kuiming. Microstructure and properties of laser deposition coating assisted by magnetic field[J]. LASER TECHNOLOGY, 2019, 43(2): 154-160. DOI: 10.7510/jgjs.issn.1001-3806.2019.02.002

Microstructure and properties of laser deposition coating assisted by magnetic field

More Information
  • Received Date: May 17, 2018
  • Revised Date: June 11, 2018
  • Published Date: March 24, 2019
  • In order to improve coating defects such as porosity, crack and poor bonding with substrate during laser deposition, Fe106+nickel-coated tungsten carbide (mass fraction of 0.05) composite coating was prepared on 304 austenitic stainless steel by the method of laser deposition assisted by rotating magnetic field.The microstructures and phase composition of the coating were analyzed by means of scanning electron microscope, X-ray diffraction and confocal laser scanning microscope.The wear resistance of the coating was studied by means of hardness tester and friction wear tester.The results indicate that the rotating magnetic field can inhibit the flow of molten pool and promote the fine grain strengthening and homogenization of the coating microstructure.The microhardness of the coating with magnetic field strength of 70mT is 1.16 times that without magnetic field strength.Under the same wear condition, the weight loss of the coating with magnetic field strength of 70mT is 64.2% lower than that of the coating without magnetic field.The wear resistance is obviously improved.laser deposition assisted by magnetic field is helpful to improve laser deposition defects.
  • [1]
    LI Y J, LI J N.Laser welding/cutting/cladding technology[M].Beijing:Chemical Industry Press, 2016:37-48(in Chinese).
    [2]
    ZHANG D W, LEI T Q, LI Q.Recent development of research on surface modification of metals with laser cladding(Ⅰ)[J].China Surface Engineering, 1999, 12(3):22-26(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BMGC199903000.htm
    [3]
    ZHANG D W, LEI T Q, LI Q.Recent development of research on surface modification of metals with laser cladding(Ⅱ)[J].China Surface Engineering, 1999, 12(4):11-15(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BMGC199903000.htm
    [4]
    YAN X L, DONG Sh Y, XUN B Sh, et al. Analysis of microstructure distribution and defect generation mechanism of the laser cladding layer with Fe901 alloy powder[J]. Manufacturing Technology and Machine Tools, 2013(12):115-118(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zzjsyjc201312036
    [5]
    XU H, JIAN X, MEEK T T, et al. Degassing of molten aluminum A356 alloy using ultrasonic vibration[J]. Materials Letters, 2004, 58(29):3669-3673. DOI: 10.1016/j.matlet.2004.02.055
    [6]
    LIU G Zh, ZHONG W H, GAO Y. Formation and prevention of laser cladding coating defects[J]. Surface Technology, 2012, 41(5):89-92(in Chinese).
    [7]
    XU M S, LI J F, LI S D, et al. The effect of laser cladding powder and process parameters on the bond strength between 45 steel matrix and cladding layer[J]. Chinese Journal of Mechanical Engineering, 2017, 53(9):209-216(in Chinese). DOI: 10.3901/JME.2017.09.209
    [8]
    WANG L, HU Y, SONG Sh Y, et al.The steady-state magnetic field assisted in the inhibition of laser cladding surface ripple[J]. Chinese Journal of Lasers, 2015, 42(11):1103005(in Chinese). DOI: 10.3788/CJL
    [9]
    LIU H X, JI Sh W, JIANG Y H, et al.Microstructure and properties of laser cladding Fe60 composite coating assisted by rotating magnetic field[J]. Chinese Journal of Lasers, 2013, 40(1):0103007(in Chinese). DOI: 10.3788/CJL
    [10]
    LIU H X, JI Sh W, JIANG Y H, et al. Magnetic field-assisted laser cladding preparation of Ni60CuMoW composite coating[J]. High Power Laser and Particle Beams, 2012, 24(12):2901-2905(in Ch-inese). DOI: 10.3788/HPLPB
    [11]
    CAI Ch X, LIU H X, JIANG Y H, et al. Effect of alternating magnetic field on microstructure and wear resistance of laser cladding Fe-based composite coatings[J]. Journal of Tribology, 2013, 33(3):229-235(in Chinese).
    [12]
    BACHMANN M, AVILOV V, GUMENYUK A, et al. Experimental and numerical investigation of an electromagnetic weld pool control for laser beam welding[J]. Physics Procedia, 2014, 56:515-524. DOI: 10.1016/j.phpro.2014.08.006
    [13]
    GATZEN M. Influence of low-frequency magnetic fields during laser beam welding of aluminium with filler wire[J]. Physics Procedia, 2012, 39(9):59-66. http://cn.bing.com/academic/profile?id=8d68ddc670791e24ea4b828001d951fc&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    YU B H, HU X H, WU Y E, et al.The effect of electromagnetic stirring on the microstructure and hardness of laser cladding WC-Co based alloy coating[J]. Chinese Journal of Lasers, 2010, 37(10):2672-2677(in Chinese). DOI: 10.3788/CJL
    [15]
    GERALD P, TENNYSON, KUMAR P, et al. Experimental studies and phase field modeling of microstructure evolution during solidification with electromagnetic stirring[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(s3):774-780. http://cn.bing.com/academic/profile?id=93061dc2447283c8b427bb254647b12e&encoded=0&v=paper_preview&mkt=zh-cn
    [16]
    BAI F, SHA M, LI T, et al. Influence of rotating magnetic field on the microstructure and phase content of Ni-Al alloy[J]. Journal of Alloys & Compounds, 2011, 509(14):4835-4838. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b81b17d6862ac2f188a2c2c5915e5cb0
    [17]
    KORE S D, DATE P P, KULKARNI S V. Electromagnetic impact welding of aluminum to stainless steel sheets[J]. Journal of Materials Processing Technology, 2008, 208(1):486-493. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=817e6efb077cb7a83c63e1cde15abac0
    [18]
    LUO J, MA J, WANG X J, et al. The effect of external magnetic field on the microstructure and crack of magnesium alloy welds[J]. Rare Metal Materials and Engineering, 2009, 38(s3):215-219.
    [19]
    XU H, ZHENG Q G, DING Zh H, et al.Electromagnetic stirring assisted laser cladding of hard alloys[J]. Laser Technology, 2009, 29(5):449-451(in Chinese).
    [20]
    YUAN F B, WEI H Y, HUANG L, et al.Taguchi experimental study on energy efficiency of laser direct metal deposition process[J]. Laser Technology, 2018, 42(1):24-29(in Chinese). http://www.jgjs.net.cn/EN/Y2018/V42/I1/24
    [21]
    ZHAO Z Y, MI G Y, ZHANG X, et al. The influence of external magnetic field on stainless steel laser hot wire welding[J]. Laser Technology, 2017, 41(2):270-274(in Chinese). http://www.jgjs.net.cn/EN/Y2017/V41/I2/270
    [22]
    DU L L, GAO X D, ZHOU X H, et al. Study on magneto-optical imaging law of laser welded crack under the excitation of rotating magnetic field[J]. Laser Technology, 2018, 42(6):780-784(in Ch-inese). http://www.jgjs.net.cn/CN/abstract/abstract15863.shtml
  • Related Articles

    [1]CHEN Yueming, XIAO Huaqiang, LIN Bo, MO Taiqian. Study on wear resistance of laser cladding Ti3V2Nb based on lightweight high entropy alloy coatings[J]. LASER TECHNOLOGY, 2024, 48(6): 891-899. DOI: 10.7510/jgjs.issn.1001-3806.2024.06.015
    [2]YANG Kaixin, SUN Wenlei, XIAO Qi, CHEN Zihao. Study on hardness and wear resistance of laser cladding Fe06+(TiC/Mo) composite coatings[J]. LASER TECHNOLOGY, 2023, 47(3): 393-399. DOI: 10.7510/jgjs.issn.1001-3806.2023.03.017
    [3]ZHENG Biju, WEI Jinyu, JIANG Yehua, ZHANG Xijun. Wear property of NiCoFeCrTi high entropy alloy coating by laser cladding[J]. LASER TECHNOLOGY, 2016, 40(3): 432-435. DOI: 10.7510/jgjs.issn.1001-3806.2016.03.028
    [4]DIAO Wang-xun, TANG Hai-bo, FANG Yan-li, LIU Dong, ZHANG Shu-quan, WANG Hua-ming. Microstructure and wear resistance of laser clad Cr7C3 reinforced Cr-Ni-Si coating[J]. LASER TECHNOLOGY, 2011, 35(4): 457-460,467. DOI: 10.3969/j.issn.1001-3806.2011.04.006
    [5]LIU Ming-kun, TANG Hai-bo, FANG Yan-li, ZHANG Shu-quan, LIU Dong, WANG Hua-ming. Wear resistance of laser clad TiC/Ti-Ti2 Co coating on titanium alloy[J]. LASER TECHNOLOGY, 2011, 35(4): 444-447,452. DOI: 10.3969/j.issn.1001-3806.2011.04.003
    [6]QIU Xing-wu. Microstructure and properties of laser transformation hardening layer on 1Cr18Ni9Ti[J]. LASER TECHNOLOGY, 2011, 35(3): 425-427,432. DOI: 10.3969/j.issn.1001-3806.2011.03.036
    [7]YANG Sheng-qun, MENG Qing-wu, GENG Lin, WU Lin, LI Ai-bin. Wear resistance of laser cladding coating onto titanium alloy substrate[J]. LASER TECHNOLOGY, 2007, 31(5): 473-475.
    [8]SHAN Ji-guo, REN Jia-lie, DING Jian-chun, ZHAO Nan-nan. Microstructure and wear resistance of Cr powder alloying layers on cast iron[J]. LASER TECHNOLOGY, 2004, 28(1): 1-4.
    [9]Xiang Dong, Xu Bin, Liu Kegao. Microstructures and properties of laser clad ceramic layers on W6Mo5Cr4V2 high speed steel surface[J]. LASER TECHNOLOGY, 2003, 27(5): 434-436.
    [10]Si Songhua, Yuan Xiaomin, He Yizhu. Microstructure performance of laser clad Ni-based alloy coating with SiC ceramics particles[J]. LASER TECHNOLOGY, 2002, 26(5): 324-326.
  • Cited by

    Periodical cited type(2)

    1. 郑淦专,马锋. 基于障碍物速度位置机会约束无人机MPC防撞策略. 飞行力学. 2024(06): 23-30 .
    2. 赵太飞,容开新,王一琼,李晖. 改进蝙蝠算法的紫外光引导无人机路径规划. 激光技术. 2023(05): 678-685 . 本站查看

    Other cited types(0)

Catalog

    Article views (5) PDF downloads (12) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return