高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PCCL光束对瑞利粒子作用力的理论研究

谢陈 屈军

引用本文:
Citation:

PCCL光束对瑞利粒子作用力的理论研究

    通讯作者: 屈军, qujun70@ahnu.edu.cn
  • 基金项目:

    国家自然科学基金资助项目 12074005

  • 中图分类号: O439

Theoretical study on the force of PCCL beam on Rayleigh particles

    Corresponding author: QU Jun, qujun70@ahnu.edu.cn
  • CLC number: O439

  • 摘要: 为了探究部分相干月牙形光束(PCCL)对瑞利粒子的捕获特性,采用广义惠更斯-菲涅耳原理推导了PCCL光束经过ABCD光学系统传输后的交叉谱密度及对瑞利粒子作用力的表达式,对聚焦PCCL光束在焦平面的归一化光强和对瑞利粒子作用力的分布情况进行了软件模拟和理论分析,得到了聚焦PCCL光束的光强和捕获力随光束参量以及焦距变化的规律。结果表明,选取光束阶数n=3、初始腰宽w0=0.1 mm、相干长度d0=6 mm时,经焦距f=12 mm的透镜聚焦后的PCCL光束对高、低折射率粒子均能实现捕获;由于PCCL光束在焦平面处呈现离轴光强分布,峰值光强不在坐标原点,通过调节光束阶数、初始腰宽、相干长度和焦距,可实现对聚焦PCCL光强及瑞利粒子作用力的调控,从而实现聚焦PCCL光束对不同位置处瑞利粒子的灵活捕获。该研究结果为实际聚焦PCCL光束稳定捕获微粒提供了理论依据。
  • 图 1  不同相干长度PCCL光束经ABCD光学系统聚焦后归一化光强图

    Figure 1.  Normalized intensity maps of PCCL beams with different coherent lengths focused by ABCD optical system

    图 2  不同初始腰宽PCCL光束经ABCD光学系统聚焦后归一化光强图

    Figure 2.  Normalized intensity map of PCCL beams with different waist widths focused by ABCD optical system

    图 3  PCCL光束经不同ABCD光学系统聚焦后归一化光强图

    Figure 3.  Normalized intensity maps of PCCL beams focused by different ABCD optical systems

    图 4  不同光束阶数聚焦PCCL光束作用于高折射率粒子产生的横向、纵向梯度力的分布情况

    Figure 4.  Distribution of transverse and longitudinal gradient forces generated by focusing PCCL beams with different beam orders on high refractive index particles

    图 5  不同光束阶数聚焦PCCL光束作用于高折射率粒子产生的横向、纵向散射力的分布情况

    Figure 5.  Distribution of transverse and longitudinal scattering forces generated by focusing PCCL beams with different beam orders on high refractive index particles

    图 6  聚焦PCCL光束作用于高、低折射率粒子产生的横向、纵向梯度力的分布情况

    Figure 6.  Distribution of transverse and longitudinal gradient forces generated by focusing PCCL beams on high and low refractive index particles

    图 7  聚焦PCCL光束作用于高、低折射率粒子产生的横向、纵向散射力的分布情况

    Figure 7.  Distribution of transverse and longitudinal scattering forces generated by focusing PCCL beams on high and low refractive index particles

    图 8  聚焦PCCL光束作用于高折射率粒子产生的横向、纵向梯度力随不同焦距的分布情况

    Figure 8.  Distribution of transverse and longitudinal gradient forces generated by focusing PCCL beams on high refractive index particles with different focal lengths

    图 9  聚焦PCCL光束作用在高折射率粒子产生的横向、纵向梯度力随不同初始腰宽的分布情况

    Figure 9.  Distribution of transverse and longitudinal gradient forces generated by focusing PCCL beams on high refractive index particles with different initial waist widths

  • [1]

    KATO Y, MIMA K, MIYANAGA N, et al. Random phasing of high-power lasers foruniform target acceleration and plasma-instability su-ppression[J]. Physical Review Letters, 1984, 53 (11): 1057-1060. doi: 10.1103/PhysRevLett.53.1057
    [2] 陈光明, 林惠川, 蒲继雄. 基于调制光束的空间相干性获得局域空心光束[J]. 强激光与粒子束, 2011, 23(8): 2069-2073.

    CHEN G M, LIN H Ch, PU J X. Obtaining local hollow beams based on spatial coherence of modulated beams[J]. High Power Laser and Particle Beam, 2011, 23(8): 2069-2073(in Chinese).
    [3] 田欢欢, 徐勇根, 杨婷, 等. 部分相干反常椭圆空心高斯光束在非Kolmogorov湍流中的光束漂移[J]. 激光与光电子学进展, 2017, 54(5): 050103.

    TIAN H H, XU Y G, YANG T, et al. Beam drift of partially coherent anomalous elliptical hollow Gaussian beams in non Kolmogorov turbulence[J]. Progress in Laser and Optoelectronics, 2017, 54(5): 050103(in Chinese).
    [4]

    WANG F, LIU X, LIU L, et al. Experimental study of the scintillation index of a radially polarized beam with controllable spatial cohe-rence[J]. Applied Physics Letters, 2013, 103(9): 091102. doi: 10.1063/1.4819202
    [5]

    BERMAN G P, BISHOP A R, CHEERNOBROD B M, et al. Suppre-ssion of intensity fluctuations in free space high-speed optical communication based on spectral encoding of a partially coherent beam[J]. Optics Communications, 2007, 280(2): 264-270. doi: 10.1016/j.optcom.2007.08.055
    [6]

    HAO Z, XING Y L, ZHOU Y W, et al. Generation and propagation of partially coherent power-exponent-phase vortex beam[J]. Frontiers in Physics, 2021, 9: 781688. doi: 10.3389/fphy.2021.781688
    [7] 柯熙政, 张雅. 无线光通信系统中部分相干阵列光束的传输特性研究[J]. 激光与光电子学进展, 2016, 53(10): 100601.

    KE X Zh, ZHANG Y. Research on the transmission characteristics of partially coherent array beams in wireless optical communication systems[J]. Progress in Laser and Optoelectronics, 2016, 53(10): 100601 (in Chinese).
    [8]

    VALENCIA A, SCARCELLI G, ANGELO D, et al. Two-photon imaging with thermal light[J]. Physical Review Letters, 2005, 94(6): 063601. doi: 10.1103/PhysRevLett.94.063601
    [9]

    CAI Y, ZHU S. Ghost imaging with incoherent and partially coherent light radiation[J]. Physical Review E, 2005, 71(5): 056607. doi: 10.1103/PhysRevE.71.056607
    [10]

    WU G, CAI Y. Detection of a semirough target in turbulent atmosphere by a partially coherent beam[J]. Optics Letters, 2011, 36(10): 1939-1941. doi: 10.1364/OL.36.001939
    [11]

    LUO M, ZHAO D. Simultaneous trapping of two types of particles by using a focused partially coherent cosine-Gaussian-correlated Schell-model beam[J]. Laser Physics, 2014, 24(6): 1-6.
    [12]

    YU J, CHEN Y, LIU L, et al. Splitting and combining properties of an elegant Hermite-Gaussian correlated Schell-model beam in Kolmogorov and non-Kolmogorov turbulence[J]. Optics Express, 2015, 23(10): 13467-13481. doi: 10.1364/OE.23.013467
    [13]

    MEI Z, KOROTKOVA O, SHCHEPAKINA E. Electromagnetic multi-Gaussian Schell-model beams[J]. Journal of Optics, 2012, 15(2): 025705.
    [14]

    ASHKIN A. Acceleration and trapping of particles by radiation pre-ssure[J]. Physical Review Letters, 1970, 24(4): 156-159. doi: 10.1103/PhysRevLett.24.156
    [15]

    ASHKIN A, DZIEDZIC J M, BJORKHOLM J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 1986, 11(5): 288-290. doi: 10.1364/OL.11.000288
    [16]

    ASHKIN A. Optical trapping and manipulation of neutral particles using lasers[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(10): 4853- 4860.
    [17]

    ZHAO C L, CAI Y J, LU X H, et al. Radiation force of coherent and partially coherent flat-topped beams on a rayleigh particle[J]. Optics Express, 2009, 17(3): 1753-1765. doi: 10.1364/OE.17.001753
    [18]

    ZHANG H H, HAN Y P, WANG J J, et al. Optical trapping forces on rayleigh particles by a focused Bessel-Gaussian correlated Schell-model beam[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 235: 309-316. doi: 10.1016/j.jqsrt.2019.07.015
    [19] 罗慧, 袁扬胜, 屈军, 等. 部分相干复宗量厄米-高斯光束捕获两种类型粒子[J]. 中国激光, 2014, 41(5): 0502006.

    LUO H, YUAN Y Sh, QU J, et al. Partially coherent complex argument Hermitian Gaussian beams capture two types of particles[J]. Chinese Journal of Lasers, 2014, 41(5): 0502006(in Chinese).
    [20] 周正兰, 周源, 徐华锋, 等. 特殊关联部分相干光研究进展[J]. 量子电子学报, 2020, 37(5): 615-632.

    ZHOU Zh L, ZHOU Y, XU H F, et al. Research progress in special correlated partially coherent light[J]. Journal of Quantum Electronics, 2020, 37(5): 615-632 (in Chinese).
    [21]

    WANG F, LI J, PIEDRA M, et al. Propagation dynamics of partially coherent crescent like optical beams in free space and turbulent atmosphere[J]. Optics Express, 2017, 25(21): 26055-26066.
    [22] 周正兰, 袁扬胜, 束杰, 等. 部分相干月牙形光束在非Kolmogorov谱中的漂移[J]. 激光技术, 2019, 43(4): 143-148.

    ZHOU Zh L, YUAN Y Sh, SHU J, et al. Drift of partially coherent crescent beams in non Kolmogorov spectra[J]. Laser Technology, 2019, 43(4): 143-148(in Chinese).
    [23] 张雅凯, 郭苗军, 李晋红, 等. 扭曲多高斯光束在梯度折射率光纤中的传输特性[J]. 激光技术, 2022, 46(5): 594-600.

    ZHANG Y K, GUO M J, LI J H, et al. Propagation characteristics of twisted multi-Gaussian beams in gradient index fibers[J]. Laser Technology, 2022, 46(5): 594-600(in Chinese).
  • [1] 周正兰袁扬胜束杰徐翔屈军 . 部分相干月牙形光束在非Kolmogorov谱中的漂移. 激光技术, 2019, 43(4): 579-584. doi: 10.7510/jgjs.issn.1001-3806.2019.04.025
    [2] 彭愿洁吕百达 . AGSM光束的聚焦. 激光技术, 2004, 28(3): 289-292,295.
    [3] 潘留占吕百达 . 部分相干光通过像散透镜的聚焦特性. 激光技术, 2003, 27(4): 374-376,379.
    [4] 李纲卢峰朱斌吴玉迟谷渝秋 . 波前像差对超短飞秒激光脉冲聚焦特性的影响. 激光技术, 2020, 44(1): 14-19. doi: 10.7510/jgjs.issn.1001-3806.2020.01.003
    [5] 季小玲吕百达 . 高斯光束通过球差透镜的聚焦特性. 激光技术, 2001, 25(2): 150-153.
    [6] 高金全周正兰徐华锋吴彬屈军 . 部分相干Airy涡旋光束在非Kolmogorov谱中的模态强度. 激光技术, 2021, 45(4): 522-529. doi: 10.7510/jgjs.issn.1001-3806.2021.04.018
    [7] 陈凯朱东旭焦宏伟 . 高斯-谢尔模型光束通过聚焦光学系统的偏振特性. 激光技术, 2014, 38(2): 246-250. doi: 10.7510/jgjs.issn.1001-3806.2014.02.021
    [8] 束杰屈军 . EEMGSM光束在各向异性湍流中的光束质量因子研究. 激光技术, 2019, 43(6): 834-840. doi: 10.7510/jgjs.issn.1001-3806.2019.06.019
    [9] 杨秋平叶兵 . 用双平凸薄透镜组聚焦高斯激光束. 激光技术, 2010, 34(4): 520-524. doi: 10.3969/j.issn.1001-3806.2010.04.024
    [10] 孙振东吴庚生 . YAG激光打标机光笔中会聚出纤光的光学系统. 激光技术, 1996, 20(1): 41-43.
    [11] 常山毛杰健杨建荣 . 高斯光束微圆孔菲涅耳衍射的束型转变. 激光技术, 2012, 36(4): 568-571. doi: 10.3969/j.issn.1001-806.2012.04.034
    [12] 黄妙良沈鸿元 . 聚焦对二次谐波转换效率的影响. 激光技术, 1994, 18(2): 95-98.
    [13] 李蕾臧景峰 . 双狭缝扫描法测量激光光束质量. 激光技术, 2015, 39(6): 845-849. doi: 10.7510/jgjs.issn.1001-3806.2015.06.024
    [14] 郑晖林季鹏史斐戴殊韬江雄康治军翁文林文雄 . 倍频过程对激光光束质量及空间分布的影响. 激光技术, 2009, 33(1): 67-70.
    [15] 彭继崔执凤屈军 . 抛物线坐标系非傍轴矢量光束的解及聚焦特性. 激光技术, 2014, 38(5): 703-708. doi: 10.7510/jgjs.issn.1001-3806.2014.05.027
    [16] 张靳黄磊王东生殷聪巩马理 . 光学组合半导体激光器输出光束特性研究. 激光技术, 2007, 31(3): 228-231,241.
    [17] 吕崇玉陈泽洋朱文欣田友伟 . 紧聚焦强激光脉冲中电子的非对称性辐射. 激光技术, 2022, 46(3): 422-426. doi: 10.7510/jgjs.issn.1001-3806.2022.03.020
    [18] 刘作业李露胡碧涛 . 离轴抛物面镜对超短激光脉冲紧聚焦特性的研究. 激光技术, 2012, 36(5): 657-661. doi: 10.3969/j.issn.1001-3806.2012.05.021
    [19] 韩玉东沈学举王龙 . 平顶高斯光束在失调光学系统中的传输特性. 激光技术, 2010, 34(5): 704-707. doi: 10.3969/j.issn.1001-3806.2010.O5.035
    [20] 亓红群段开椋蒲继雄 . 光纤激光及其相干合成光场的准确分析. 激光技术, 2009, 33(6): 600-603. doi: 10.3969/j.issn.1001-3806.2009.06.012
  • 加载中
图(9)
计量
  • 文章访问数:  1376
  • HTML全文浏览量:  63
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-06
  • 录用日期:  2023-11-23
  • 刊出日期:  2024-09-25

PCCL光束对瑞利粒子作用力的理论研究

    通讯作者: 屈军, qujun70@ahnu.edu.cn
  • 安徽师范大学 物理与电子信息学院,芜湖 241002,中国
基金项目:  国家自然科学基金资助项目 12074005

摘要: 为了探究部分相干月牙形光束(PCCL)对瑞利粒子的捕获特性,采用广义惠更斯-菲涅耳原理推导了PCCL光束经过ABCD光学系统传输后的交叉谱密度及对瑞利粒子作用力的表达式,对聚焦PCCL光束在焦平面的归一化光强和对瑞利粒子作用力的分布情况进行了软件模拟和理论分析,得到了聚焦PCCL光束的光强和捕获力随光束参量以及焦距变化的规律。结果表明,选取光束阶数n=3、初始腰宽w0=0.1 mm、相干长度d0=6 mm时,经焦距f=12 mm的透镜聚焦后的PCCL光束对高、低折射率粒子均能实现捕获;由于PCCL光束在焦平面处呈现离轴光强分布,峰值光强不在坐标原点,通过调节光束阶数、初始腰宽、相干长度和焦距,可实现对聚焦PCCL光强及瑞利粒子作用力的调控,从而实现聚焦PCCL光束对不同位置处瑞利粒子的灵活捕获。该研究结果为实际聚焦PCCL光束稳定捕获微粒提供了理论依据。

English Abstract

    • 对激光空间相干性进行适当降低可以使光束呈现出独特的光学特征,如实现辐照均匀分布[1]、改变光斑的形状[2]、削弱光束在大气湍流中传输时所引起的光强闪烁[3]、光通信误比特率[4]和光束漂移[5]等负面影响,在光束整形[6]、光通信[7]、光学成像[8-9]、激光雷达和目标探测[10]等方面具有广泛的应用潜力。近年来,学者们相继提出了多种具有特殊光场分布的部分相干光束,如余弦高斯关联谢尔模光束[11]、厄米-高斯关联光束[12]、电磁多高斯关联谢尔模光束[13]等部分相干光束。

      光束聚焦后在焦点附近所形成的光学力能够用来操控和捕获粒子,这种技术手段称为“光镊”[14],因其在操纵电解质微粒或生物活细胞[15-16]时具有高精度、无接触和无损伤等优点,光镊技术在物理学、化学、医学和生物学等领域均具有巨大的发展前景。根据所需捕获粒子或细胞的不同特征,可选择不同特性的聚焦光束进行捕获。如微粒折射率高于周围环境介质时,可使用平顶光束或高斯-谢尔模光束捕获[17];微粒折射率小于周围环境介质时,可使用空心光束捕获[18]。使用复宗量厄米-余弦-高斯或复宗量拉盖尔-高斯-谢尔模光束则可以捕获两类不同折射率的微粒[19]。因此,研究具有特殊光场分布的部分相干光束的聚焦特性和捕获特性,有助于丰富光镊光源的类别,实现对不同粒子或细胞的稳定捕获。

      部分相干月牙形光束(partially coherent crescent-like beam,PCCL)是一种具有特殊关联空间结构的部分相干光束,其光强分布是离轴且非对称的[20]。2017年,WANG等人提出并实验生成了PCCL光束,对其传输特性进行了研究[21]。ZHOU等人探究了PCCL光束在非Kolmogorov谱中的传输特性[22]。本文作者基于广义Huygens-Fresnel原理,推导了PCCL光束经近轴ABCD光学系统传输后的交叉谱密度解析表达式;数值计算了PCCL光束聚焦后的光强以及作用在瑞利粒子上的散射力、梯度力。通过对光束参数的调节,具体研究了其捕获特性,以期丰富光镊光源种类。

    • 特殊关联部分相干光束在源平面的交叉谱密度(cross-spectral density CSD)函数可表示为[21]:

      $ W_0\left(\boldsymbol{r}_1, \boldsymbol{r}_2\right)=\tau^*\left(\boldsymbol{r}_1\right) \tau\left(\boldsymbol{r}_2\right) \mu\left(\boldsymbol{r}_2-\boldsymbol{r}_1\right) $

      (1)

      式中:r1r2是相对源平面传输过程中的两个随机位置矢量;*表示复共轭;r表示相对源平面的位置矢量,令r=r1=r2, τ(r)具有高斯分布[21]:

      $ \tau(\boldsymbol{r})=\exp \left(-\frac{\boldsymbol{r}^2}{2 w_0{ }^2}\right) $

      (2)

      式中:w0为光束腰宽。光谱相干度为[21]

      $ \begin{gathered} \mu\left(\boldsymbol{r}_2-\boldsymbol{r}_1\right)=\mathrm{L}_n^0\left(\frac{r_{\mathrm{d}}^2}{2 d_0^2}\right) \exp \left(-\frac{r_{\mathrm{d}}^2}{2 d_0^2}\right)- \\ \frac{i \sqrt{2}(n-1 / 2)!}{2 n!} \frac{r_{\mathrm{d}}}{d_0} \times \\ \quad \exp \left(-\frac{r_{\mathrm{d}}^2}{2 d_0^2}\right) \mathrm{L}_{n-1 / 2}^1\left(\frac{r_{\mathrm{d}}^2}{2 d_0^2}\right) \cos \varphi_{\mathrm{d}} \end{gathered} $

      (3)

      式中:Ln0(·)表示拉盖尔函数;n为阶数;i为虚数单位;rdφdrd的幅度与相位,rd= r2r1d0为相干长度。

      将式(2)、式(3)代入到式(1),得到源平面的交叉谱密度函数为:

      $ \begin{gathered} W_0\left(\boldsymbol{r}_1, \boldsymbol{r}_2\right)=\exp \left(-\frac{\boldsymbol{r}_1^2+\boldsymbol{r}_2^2}{2 w_0^2}\right) \times \\ {\left[\mathrm{L}_n^0\left(\frac{r_{\mathrm{d}}^2}{2 d_0^2}\right) \exp \left(-\frac{r_{\mathrm{d}}{ }^2}{2 d_0^2}\right)-\frac{\mathrm{i} \sqrt{2}(n-1 / 2)!}{2 n!} \times\right.} \\ \left.\frac{r_{\mathrm{d}}}{d_0} \exp \left(-\frac{r_{\mathrm{d}}^2}{2 d_0^2}\right) \mathrm{L}_{n-1 / 2}^1\left(\frac{r_{\mathrm{d}}^2}{2 d_0{ }^2}\right) \cos \varphi_{\mathrm{d}}\right] \end{gathered} $

      (4)
    • 在近轴条件下,PCCL光束通过ABCD光学系统传输后的交叉谱密度函数可表示为[23]

      $ \begin{gathered} W\left(\boldsymbol{\rho}_1, \boldsymbol{\rho}_2, z\right)=\left(\frac{k}{2 \pi B}\right)^2 \iint W_0\left(\boldsymbol{r}_1, \boldsymbol{r}_2\right) \times \\ \exp \left\{-\frac{\mathrm{i} k}{2 B}\left[A\left(\boldsymbol{r}_1{ }^2-\boldsymbol{r}_2{ }^2\right)-2\left(\boldsymbol{\rho}_1 \boldsymbol{r}_1-\boldsymbol{\rho}_2 \boldsymbol{r}_2\right)+\right.\right. \\ \left.\left.D\left(\boldsymbol{\rho}_1{ }^2-\boldsymbol{\rho}_2{ }^2\right)\right]\right\} \mathrm{d} \boldsymbol{r}_1 \mathrm{~d} \boldsymbol{r}_2 \end{gathered} $

      (5)

      式中:k=2π/λ为波数;ρ1ρ2是焦平面的位置矢量;f为聚焦透镜焦距;z表示光束经焦平面后的传输距离[19]

      $ \left[\begin{array}{ll} A & B \\ C & D \end{array}\right]=\left[\begin{array}{cc} -z / f & f+z \\ -1 / f & 1 \end{array}\right] $

      (6)

      ρ1=ρ2=ρ,可得到几何焦平面附近的光强分布为:

      $ \begin{gathered} I(\boldsymbol{\rho}, z)=\left(\frac{k}{2 \pi B}\right)^2 \iint W_0\left(\boldsymbol{r}_1, \boldsymbol{r}_2\right) \times \\ \exp \left\{\frac{\mathrm{i} k z}{2 f B}\left(\boldsymbol{r}_1^2-\boldsymbol{r}_2^2\right)+\frac{\mathrm{i} k}{B} \boldsymbol{\rho}\left(\boldsymbol{r}_1-\boldsymbol{r}_2\right)\right\} \mathrm{d} \boldsymbol{r}_1 \mathrm{~d} \boldsymbol{r}_2 \end{gathered} $

      (7)

      定义一个新函数:

      $ F(\boldsymbol{r})=\exp \left[-\left(\frac{1}{2 w_0{ }^2}-\frac{\mathrm{i} k A}{2 B}\right) \boldsymbol{r}^2\right] $

      (8)

      将式(4)、式(8)代入式(5)得:

      $ \begin{aligned} & W(\boldsymbol{\rho}, \boldsymbol{\rho}, z)=\frac{1}{\lambda^2 B^2} \iiint F^*\left(r_1\right) F\left(r_2\right) \times \\ & \exp \left[-\mathrm{i} k\left(\boldsymbol{r}_2-\boldsymbol{r}_1\right) \cdot\left(\boldsymbol{v}_1+\boldsymbol{v}_2\right)\right] p_1\left(\boldsymbol{v}_1\right) \times \\ & \exp \left[-\frac{\mathrm{i} k}{B}\left(\boldsymbol{r}_2-\boldsymbol{r}_1\right) \cdot \boldsymbol{\rho}\right] \mathrm{d}^2 \boldsymbol{r}_1 \mathrm{~d}^2 \boldsymbol{r}_2 \mathrm{~d}^2 \boldsymbol{v}_1 \mathrm{~d}^2 \boldsymbol{v}_2 \end{aligned} $

      (9)

      式中:p1(v1)是任意参量v1 ≡(vx, vy)值的非负函数,转化为极坐标形式的可分函数[22]

      $ p_1\left(\boldsymbol{v}_1\right)=\frac{k^2 d_0{ }^2\left(k d_0 \boldsymbol{v}_1\right)^{2 n}}{2^n n!\pi} \exp \left(\frac{k^2 d_0{ }^2 \boldsymbol{v}_1{ }^2}{2}\right) \cos ^2\left(\frac{\theta}{2}\right) $

      (10)

      引入变换:rd= r2r1, rs=(r2+r1)/2,将F*(r1)与F(r2)写成傅里叶变换的形式:

      $ \left\{\begin{array}{l} F^*\left(\boldsymbol{r}_{\mathrm{s}}-\frac{\boldsymbol{r}_{\mathrm{d}}}{2}\right)=\left(\frac{k}{2 \pi}\right)^2 \int \tilde{F}^*(\boldsymbol{u}) \times \\ \exp \left[-\mathrm{i} k \boldsymbol{u} \cdot\left(\boldsymbol{r}_{\mathrm{s}}-\frac{\boldsymbol{r}_{\mathrm{d}}}{2}\right)\right] \mathrm{d}^2 \boldsymbol{u} \\ F\left(\boldsymbol{r}_{\mathrm{s}}+\frac{\boldsymbol{r}_{\mathrm{d}}}{2}\right)=\left(\frac{k}{2 \pi}\right)^2 \int \tilde{F}(\boldsymbol{u}) \times \\ \exp \left[\mathrm{i} k \boldsymbol{u} \cdot\left(\boldsymbol{r}_{\mathrm{s}}+\frac{\boldsymbol{r}_{\mathrm{d}}}{2}\right)\right] \mathrm{d}^2 \boldsymbol{u} \end{array}\right. $

      (11)

      式中:$\tilde{F}^*(\boldsymbol{u}), \tilde{F}(\boldsymbol{u}) $表示F*(r1)和F(r2)的傅里叶变换,u表示与傅里叶变换相关的矢量。

      把式(10)、式(11)代入式(9),得到:

      $ \begin{gathered} \exp W(\boldsymbol{\rho}, \boldsymbol{\rho}, z)=\frac{1}{\lambda^2 B^2} \iiint \int \tilde{F}^*\left(\boldsymbol{u}_1\right) \tilde{F}\left(\boldsymbol{u}_2\right) p_1\left(\boldsymbol{v}_1\right) \times\\ \exp \left[-\mathrm{i} k \boldsymbol{u}_1 \cdot\left(\boldsymbol{r}_{\mathrm{s}}-\frac{\boldsymbol{r}_{\mathrm{d}}}{2}\right)\right] \times \\ \exp \left[\mathrm{i} k \boldsymbol{u}_2 \cdot\left(\boldsymbol{r}_{\mathrm{s}}+\frac{\boldsymbol{r}_{\mathrm{d}}}{2}\right)\right] \exp \left(-\frac{\mathrm{i} k}{z} \boldsymbol{r}_{\mathrm{d}} \cdot \boldsymbol{\rho}\right) \times \\ \exp \left[-\mathrm{i} k \boldsymbol{r}_{\mathrm{d}} \cdot\left(\boldsymbol{v}_1+\boldsymbol{v}_2\right)\right] \mathrm{d}^2 \boldsymbol{r}_{\mathrm{s}} \mathrm{~d}^2 \boldsymbol{r}_{\mathrm{d}} \mathrm{~d}^2 \boldsymbol{v}_1 \mathrm{~d}^2 \boldsymbol{v}_2 \mathrm{~d}^2 \boldsymbol{u}_1 \mathrm{~d}^2 \boldsymbol{u}_2 \end{gathered} $

      (12)

      式中:u1=u2=u=ρ /B

      经过冗长的积分计算,得到PCCL光束在焦平面处的交叉谱密度表达式为:

      $ \begin{gathered} W(\boldsymbol{\rho}, \boldsymbol{\rho}, z)=\frac{1}{F(B)} \exp \left[-\frac{1}{w_0{ }^2 F(B)} \rho^2\right]\left\{\left[\frac{P_1}{F(B)}\right]^n \times\right. \\ \mathrm{L}_n^0\left(-\frac{2 B^2 \rho^2}{k^2 d_0{ }^2 w_0{ }^4 P_1 F(B)}\right)+\frac{\sqrt{2}(n-1 / 2)!}{n!} \times \\ \left.\frac{B \rho \cos \varphi_d}{d_0 k w_0{ }^2 P_1}\left[\frac{P_1}{F(B)}\right]^{n+1 / 2} \mathrm{~L}_{n-1 / 2}^1\left[-\frac{2 B^2 \rho^2}{k^2 d_0{ }^2 w_0{ }^4 P_1 F(B)}\right]\right\} \end{gathered} $

      (13)

      定义:

      $ \left\{\begin{array}{l} M=\frac{1}{2 w_0{ }^2}-\frac{\mathrm{i} k A}{2 B} \\ F(B)=A^2+\frac{B^2}{k^2 w_0{ }^2}\left(\frac{1}{w_0{ }^2}+\frac{2}{d_0{ }^2}\right) \\ P_1=A^2+\frac{B^2}{k^2 w_0{ }^4} \end{array}\right. $

      (14)
    • 当粒子半径a0远小于激光波长λ(a0≤λ/20)时,粒子被称为瑞利粒子,根据瑞利散射理论,聚焦光场对瑞利粒子的梯度力Fgrad和散射力Fscat[19]

      $ $

      (15)

      式中:ez为光束传输方向上的单位矢量;c为光速;η=np/nm表示相对折射率;nm为捕获微粒折射率;np为介质折射率。

    • 根据上节中所得PCCL光束在焦平面交叉谱密度和梯度力及散射力的表达式,数值计算了聚焦PCCL光束的在焦平面的光强分布以及作用在瑞利粒子上的梯度力及散射力。

    • 为研究不同光束参数和系统焦距对聚焦后光束光强分布的影响,参数设定为:波长λ=632.8 nm,初始腰宽w0=0.2 mm,相干长度d0=2 mm,光束的功率选择为1 W,指定沿着光束传输的方向为正方向。分别给出了不同相干长度、初始腰宽和不同系统焦距情况下焦平面附近的光强分布。

      当选取的系统焦距为f=12 mm, w0=0.2 mm, z=5 μm时,所得光强如图 1所示。可见,当d0取值较大时,光斑趋向高斯分布,随着相干长度d0的减小,焦平面附近光斑的月牙形逐渐修正。

      图  1  不同相干长度PCCL光束经ABCD光学系统聚焦后归一化光强图

      Figure 1.  Normalized intensity maps of PCCL beams with different coherent lengths focused by ABCD optical system

      当系统焦距f=12 mm,d0=2 mm,w0=0.2 mm,z=5 μm时,所得光强如图 2所示。可见,随着初始腰宽w0的增大,焦平面附近的光斑增大,光强最大处向x轴正方向偏移明显,离焦平面原点距离增大。

      图  2  不同初始腰宽PCCL光束经ABCD光学系统聚焦后归一化光强图

      Figure 2.  Normalized intensity map of PCCL beams with different waist widths focused by ABCD optical system

      当保持选取光束参数为w0=0.2 mm、z=5 μm、d0=2 mm时,所得光强如图 3所示。可见,焦距越小,焦平面附近的光斑越大,光强最大处离坐标原点越远。

      图  3  PCCL光束经不同ABCD光学系统聚焦后归一化光强图

      Figure 3.  Normalized intensity maps of PCCL beams focused by different ABCD optical systems

      在保持其它参数不变的情况下,增大光束阶数,光斑随之变大且月牙形更加弯曲,光强最大处离坐标原点更远。

    • 由交叉谱密度和梯度力及散射力的解析表达式,结合聚焦PCCL光束的光强随不同参数变化规律,选择合适的光束参数和焦距,数值分析聚焦PCCL光束作用在粒子上的梯度力及散射力。

      参数设定如下:选择粒子半径a0=30 nm,波长λ=632.8 nm,初始腰宽w0=0.1 mm,相干长度d0=6 mm,np, 1=1.53(玻璃),np, 2=1(气泡),nm=1.33(水),光束的功率选择为1 W,图中力的正负代表着力的方向。

      图 4图 5中给出了不同光束阶数聚焦PCCL光束作用在高折射率瑞利粒子上的横向、纵向梯度力和散射力的分布情况。结果表明,随着光束阶数的增大,聚焦PCCL光束作用在高折射率瑞利粒子上的光学力随之增大;其它光束参数条件不变情况下,光束阶数每增加1阶,粒子所受梯度力和散射力均增大约两个数量级,且粒子所受梯度力均高于散射力。

      图  4  不同光束阶数聚焦PCCL光束作用于高折射率粒子产生的横向、纵向梯度力的分布情况

      Figure 4.  Distribution of transverse and longitudinal gradient forces generated by focusing PCCL beams with different beam orders on high refractive index particles

      图  5  不同光束阶数聚焦PCCL光束作用于高折射率粒子产生的横向、纵向散射力的分布情况

      Figure 5.  Distribution of transverse and longitudinal scattering forces generated by focusing PCCL beams with different beam orders on high refractive index particles

      当光束阶数n=3时,图 6图 7反映的是聚焦PCCL光束作用在高折射率粒子和低折射率粒子上的梯度力及散射力。实线、虚线分别代表作用在高折射率粒子和低折射率粒子上的梯度力及散射力。从图 6图 7可知,随着粒子折射率大,粒子所受梯度力及散射力均呈现减小趋势,捕获稳定范围基本不变;结果表明,聚焦PCCL光束对于两种折射率粒子均能实现捕获。

      图  6  聚焦PCCL光束作用于高、低折射率粒子产生的横向、纵向梯度力的分布情况

      Figure 6.  Distribution of transverse and longitudinal gradient forces generated by focusing PCCL beams on high and low refractive index particles

      图  7  聚焦PCCL光束作用于高、低折射率粒子产生的横向、纵向散射力的分布情况

      Figure 7.  Distribution of transverse and longitudinal scattering forces generated by focusing PCCL beams on high and low refractive index particles

      选取粒子为高折射率粒子,当光束阶数n=3、其它光束参数保持不变时,改变焦距,聚焦PCCL光束作用在粒子上的横向、纵向梯度力的变化情况如图 8所示。随着系统焦距减小,粒子所受梯度力不断增大,捕获点离坐标原点更远,捕获范围也随之增大。

      图  8  聚焦PCCL光束作用于高折射率粒子产生的横向、纵向梯度力随不同焦距的分布情况

      Figure 8.  Distribution of transverse and longitudinal gradient forces generated by focusing PCCL beams on high refractive index particles with different focal lengths

      选取粒子为高折射率粒子,当光束阶数n=3、其它光束参数保持不变时,改变光束的初始腰宽w0,聚焦PCCL光束作用在粒子上的横向、纵向梯度力的变化情况如图 9所示。随着初始腰宽w0增大,粒子所受梯度力增大明显,且捕获范围随之增大。

      图  9  聚焦PCCL光束作用在高折射率粒子产生的横向、纵向梯度力随不同初始腰宽的分布情况

      Figure 9.  Distribution of transverse and longitudinal gradient forces generated by focusing PCCL beams on high refractive index particles with different initial waist widths

    • 基于广义惠更斯-菲涅耳原理,推导了部分相干月牙形光束经近轴ABCD系统聚焦后的光强解析表达式,并进行了相应的数值分析和实验模拟。得到了聚焦后的部分相干月牙形光束在焦平面附近随光束参数和焦距变化的规律,保持其它参数不变的情况下,焦平面附近光斑随光束初始腰宽的增大而增大;随光束的相干长度和系统焦距的减小而增大;光束阶数的增大有利于改善光束质量,使其月牙形弯曲程度更加明显,光斑更大,光强最大值处离原点位置更远。通过对聚焦后的部分相干月牙形光束的梯度力及散射力研究,验证了聚焦部分相干月牙形光束可以用于捕捉瑞利粒子。所得结果对于丰富光镊光源具有理论参考价值。

参考文献 (23)

目录

    /

    返回文章
    返回