高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两种透射率入射腔镜对894.6nm倍频腔转换效率的比较

张岩 蔚娟 张俊香

引用本文:
Citation:

两种透射率入射腔镜对894.6nm倍频腔转换效率的比较

    作者简介: 张岩(1988-), 男, 博士研究生, 现主要从事量子光学及微光夜视技术方面的研究.
    通讯作者: 张俊香, junxiang_zhang@zju.edu.cn
  • 基金项目:

    陕西省教育厅自然科学研究基金资助项目 18JK0386

  • 中图分类号: O437

Comparison of the conversion efficiency of 894.6nm frequency doubling cavity with different transmission input coupler

    Corresponding author: ZHANG Junxiang, junxiang_zhang@zju.edu.cn
  • CLC number: O437

  • 摘要: 为了在对基频光透射率分别为5%和10%的两种入射腔镜(其它参数相同)中择优, 利用波长对应于铯原子D1线的894.6nm半导体激光作为基频光, 抽运以周期极化磷酸氧钛钾(PPKTP)晶体作为非线性介质的两镜驻波倍频腔, 通过外腔倍频过程产生447.3nm蓝光, 对利用这两种腔镜搭建倍频腔所产生的蓝光进行了对比。结果表明, 在注入350mW基频光、倍频腔采用透射率为5%的入射腔镜时, 制备了178mW蓝光, 倍频效率为50.8%, 0.5h功率起伏为1.4%;采用10%透射率腔镜的倍频腔获得131mW蓝光, 倍频效率为37.4%, 0.5h功率起伏为0.7%;使用5%透射率入射腔镜的倍频效果更好。该研究对产生铯原子D1线非经典光场所需高质量抽运源的制备具有重要指导意义。
  • Figure 1.  Experimental setup

    Figure 2.  a—output beam from TA b—fundamental light after shaping c—blue laser by frequency doubling

    Figure 3.  Output power of blue light versus fundamental power under two di-fferent input couplers

    Figure 4.  Blue light power stability in 0.5h

  • [1]

    MEHMET M, EBERLE T, STEINLECHNER S, et al. Demonstration of a quantum-enhanced fiber Sagnac interferometer[J]. Optics Letters, 2010, 35(10): 1665-1667. doi: 10.1364/OL.35.001665
    [2]

    MEHMET M, VAHLBRUCH H, LASTZKA N, et al. Observation of squeezed states with strong photon-number oscillations[J]. Physical Review, 2010, A81(1): 013814.
    [3]

    EBERLE T, STEINLECHNER S, BAUCHROWITZ J, et al. Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection[J]. Physical Review Letters, 2010, 104(25): 251102. doi: 10.1103/PhysRevLett.104.251102
    [4]

    VAHLBRUCH H, MEHMET M, DANZMANN K, et al. Detection of 15dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J]. Physical Review Letters, 2016, 117(11): 11081.
    [5]

    HOFF U B, HARRIS G I, MADSEN L S, et al. Quantum-enhanced micromechanical displacement sensitivity[J]. Optics Letters, 2013, 38(9): 1413-1415. doi: 10.1364/OL.38.001413
    [6]

    POOSER R C, LAWRIE B. Ultrasensitive measurement of microcantilever displacement below the shot-noise limit[J]. Optica, 2015, 2(5): 393-399. doi: 10.1364/OPTICA.2.000393
    [7]

    KIMBLE H J. The quantum internet[J]. Nature, 2008, 453: 1023-1030. doi: 10.1038/nature07127
    [8]

    POLZIK E S, CARRI J, KIMBLE H J. Spectroscopy with squeezed light[J]. Physical Review Letters, 1992, 68(20): 3020-3023. doi: 10.1103/PhysRevLett.68.3020
    [9]

    TURCHETTE Q A, GEORGIADES N P, HOOD C J, et al. Squeezed excitation in cavity QED: Experiment and theory[J]. Phy-sical Review, 1998, A58(5): 4056-4077.
    [10]

    APPEL J, FIGUEROA E, KORYSTOV D, et al. Quantum memory for squeezed light[J]. Physical Review Letters, 2008, 100(9): 093602. doi: 10.1103/PhysRevLett.100.093602
    [11]

    PASCHOTTA R, KüRZ P, HENKING R, et al. 82% efficient continuous-wave frequency doubling of 1.06μm with a monolithic MgO ∶LiNbO3 resonator[J]. Optics Letters, 1994, 19(17): 1325-1327. doi: 10.1364/OL.19.001325
    [12]

    FENG J X, LI Y M, LIU Q, et al. High-efficiency generation of a continuous-wave single-frequency 780nm laser by external-cavity frequency doubling[J]. Applied Optics, 2007, 46(17): 3593-3596. doi: 10.1364/AO.46.003593
    [13]

    TIAN L, WANG Q W, YAO W X, et al. Experimental realization of high-efficiency blue light at 426nm by external frequency doubling resonator[J]. Acta Physica Sinica, 2020, 69(4): 044201(in Chinese). doi: 10.7498/aps.69.20191417
    [14]

    HAN Y S, WEN X, BAI J D, et al. Generation of 130mW of 397.5nm tunable laser viaring-cavity-enhanced frequency doubling[J]. Journal of the Optical Society of America, 2014, B38(8): 1942-1947.
    [15]

    WEN X, HAN Y S, BAI J D, et al. Cavity-enhanced frequency doubling from 795nm to 397.5nm ultra-violet coherent radiation with PPKTP crystals in the low pump power regime[J]. Optics Express, 2014, 22(26): 32293-32300. doi: 10.1364/OE.22.032293
    [16]

    ZHAI Y Y, FAN B, YANG S F, et al. A tunable blue light source with narrow linewidth for cold atom experiments[J]. Chinese Physics Letters, 2013, 30(4): 044209. doi: 10.1088/0256-307X/30/4/044209
    [17]

    VILLA F, CHIUMMO A, GIACOBINO E, et al. High-efficiency blue-light generation with a ring cavity with periodically poled KTP[J]. Journal of the Optical Society of America, 2007, B24(3): 576-580.
    [18]

    DENG X, ZHANG J, ZHANG Y C, et al. Generation of blue light at 426nm by frequency doubling with a monolithic periodically poled KTiOPO4[J]. Optics Express, 2013, 21(22): 25907-25911. doi: 10.1364/OE.21.025907
    [19]

    TIAN J F, YANG C, XUE J, et al. High-efficiency blue light generation at 426nm in low pump regime[J]. Journal of Optics, 2016, 18(5): 055506. doi: 10.1088/2040-8978/18/5/055506
    [20]

    ZHANG Y, LIU J H, MA R, et al. Generation of quadrature squeezed vacuum light field for cesium D1 line[J]. Acta Optica Sinica, 2017, 37(5): 0519001(in Chinese). doi: 10.3788/AOS201737.0519001
    [21]

    LUO G Z, ZHU SH N, HE J L, et al. Simultaneously efficient blue and red light generations in a periodically poled LiTaO3[J]. Applied Physics Letters, 2001, 78(20): 3006-3008. doi: 10.1063/1.1371245
    [22]

    LIAO J, HE J L, LIU H, et al. Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interactions from a single, aperiodically-poled LiTaO3[J]. Applied Physics Letters, 2003, 82(19): 3159. doi: 10.1063/1.1570941
    [23]

    ZHDANOV B V, SHAFFER M K, LU Y L, et al. Perfomance comparison of nonlinear crystals for frequency doubling of an 894nm Cs vapor laser[C]. Proceedings of the SPIE, 2010, 7846: 32-39.
    [24]

    ZHANG Y, LIU J H, WU J Z, et al. Single-frequency tunable 447.3nm laser by frequency doubling of tapered amplified diode laser at cesium D1 line[J]. Optics Express, 2016, 24(17): 19769-19775. doi: 10.1364/OE.24.019769
    [25]

    ZHANG Y, LIU Ch, XIAO Ch Sh, et al. Comparison of frequency locking of 894.6nm frequency doubling cavity using intra-modulation technology and Pound-Drever-Hall technology[J]. Laser Technology, 2017, 41(1): 47-50(in Chinese).
    [26]

    ZHANG Y, MA R, LIU J H, et al. Locking the frequency of the external cavity diode laser at 894.6nm using polarization spectroscopy[J]. Journal of Quantum Optics, 2017, 23(1): 87-91(in Chinese).
    [27]

    TYMINSKI J K. Photorefractive damage in KTP used as second-harmonic generator[J]. Journal of Applied Physics, 1991, 70(10): 5570-5576. doi: 10.1063/1.350194
  • [1] 袁纵横张静张文涛 . 双波长激光传输特性的室内模拟实验研究. 激光技术, 2010, 34(4): 478-481. doi: 10.3969/j.issn.1001-3806.2010.04.013
    [2] 闫明宝周萍王海龙 . SiO2/Si光子晶体透射特性的数值研究. 激光技术, 2009, 33(1): 50-52,70.
    [3] 赵建伟江孝伟方晓敏赵燕娟葛正阳 . 金属光栅提高蓝光LED提取效率的研究. 激光技术, 2019, 43(1): 58-62. doi: 10.7510/jgjs.issn.1001-3806.2019.01.012
    [4] 方云团沈廷根林国华 . 光在一维随机分布光子晶体中的传播. 激光技术, 2004, 28(2): 153-155.
    [5] 曹小龙车永莉王伟李清山吴福全 . 多孔氧化铝模板的制备及性质研究. 激光技术, 2006, 30(4): 415-417.
    [6] 牛明生宋连科 . 一种新型平行可调对称分束器的设计. 激光技术, 2010, 34(2): 214-217. doi: 10.3969/j.issn.1001-3806.2010.02.019
    [7] 张岩刘超肖长顺张俊香 . 内调制技术和Pound-Drever-Hall技术对894.6nm倍频腔的稳频比较. 激光技术, 2017, 41(1): 47-50. doi: 10.7510/jgjs.issn.1001-3806.2017.01.010
    [8] 刘音李岩 . 双折射外腔双频激光器光回馈. 激光技术, 2007, 31(5): 459-461.
    [9] 梁志远张盛伏王建明 . 多镜腔1.44μm波长Nd:YAG激光器的实现. 激光技术, 2006, 30(3): 286-288.
    [10] 杨振刚陈海清王磊任温馨 . 利用内腔变形反射镜补偿激光器畸变的研究. 激光技术, 2007, 31(5): 449-451.
    [11] 王霄季进清张惠中刘会霞 . 基于全息技术的激光透射塑料焊接研究. 激光技术, 2008, 32(5): 510-512.
    [12] 刘宗华郑义 . 掺镱光子晶体光纤激光器谐振腔的实验研究. 激光技术, 2014, 38(1): 105-108. doi: 10.7510/jgjs.issn.1001-3806.2014.01.023
    [13] 徐美健於海武蒋新颖段文涛袁晓东 . 布氏角片状激光振荡器腔内损耗实验研究. 激光技术, 2008, 32(3): 320-322,326.
    [14] 杨旭东李淑静曹学敏王海 . 光栅反馈频率可调谐扩展腔半导体激光器. 激光技术, 2008, 32(6): 645-647,666.
    [15] 袁晓东蒋新颖郑建刚胡东霞段文涛蒋东镔金国藩 . 热不灵敏激光谐振腔补偿特性研究. 激光技术, 2010, 34(2): 145-148,160. doi: 10.3969/j.issn.1001-3806.2010.02.001
    [16] 赵家敏高健梁勖王效顺游利兵王庆胜余吟山方晓东 . 双腔准分子激光器脉冲充电电源的研究. 激光技术, 2013, 37(1): 97-100. doi: 10.7510/jgjs.issn.1001-3806.2013.01.024
    [17] 王灿召李丽尚卫东孙建国郭占斌李忠华 . 正分支共焦非稳腔的脉冲固体激光器研究. 激光技术, 2013, 37(4): 441-444. doi: 10.7510/jgjs.issn.1001-3806.2013.04.006
    [18] 张令开顾华东郑陈琪高静武晓东唐玉国 . 热透镜不灵敏长脉冲绿激光腔的设计与分析. 激光技术, 2011, 35(2): 167-169,181. doi: 10.3969/j.issn.1001-3806.2011.02.007
    [19] 李静刘会霞谭文胜孙跃东申祥王霄 . 聚苯乙烯与钛激光透射连接工艺研究. 激光技术, 2018, 42(6): 827-834. doi: 10.7510/jgjs.issn.1001-3806.2018.06.019
    [20] 陈小清杨开勇谭中奇 . 适度反馈机制下非准直外腔二重反馈自混合干涉. 激光技术, 2013, 37(2): 265-269. doi: 10.7510/jgjs.issn.1001-3806.2013.02.031
  • 加载中
图(4)
计量
  • 文章访问数:  3526
  • HTML全文浏览量:  2273
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-09
  • 录用日期:  2022-07-22
  • 刊出日期:  2022-11-25

两种透射率入射腔镜对894.6nm倍频腔转换效率的比较

    通讯作者: 张俊香, junxiang_zhang@zju.edu.cn
    作者简介: 张岩(1988-), 男, 博士研究生, 现主要从事量子光学及微光夜视技术方面的研究
  • 1. 西安工业大学 光电工程学院, 西安 710021
  • 2. 浙江大学 物理系 光学研究所, 杭州 310027
基金项目:  陕西省教育厅自然科学研究基金资助项目 18JK0386

摘要: 为了在对基频光透射率分别为5%和10%的两种入射腔镜(其它参数相同)中择优, 利用波长对应于铯原子D1线的894.6nm半导体激光作为基频光, 抽运以周期极化磷酸氧钛钾(PPKTP)晶体作为非线性介质的两镜驻波倍频腔, 通过外腔倍频过程产生447.3nm蓝光, 对利用这两种腔镜搭建倍频腔所产生的蓝光进行了对比。结果表明, 在注入350mW基频光、倍频腔采用透射率为5%的入射腔镜时, 制备了178mW蓝光, 倍频效率为50.8%, 0.5h功率起伏为1.4%;采用10%透射率腔镜的倍频腔获得131mW蓝光, 倍频效率为37.4%, 0.5h功率起伏为0.7%;使用5%透射率入射腔镜的倍频效果更好。该研究对产生铯原子D1线非经典光场所需高质量抽运源的制备具有重要指导意义。

English Abstract

    • 在很多需要用到非经典光场的实验研究中,广泛采用外腔倍频过程制备抽运源,进而利用抽运源进行参量下转换产生所需非经典光场[1-4]。在与碱金属原子相关的量子光学实验中,特别是对于铷原子和铯原子,其相应吸收线的非经典光有着重要的应用,如超精密测量[5-6]、量子网络[7]、光谱的测量[8]、光和原子相互作用[9]等。在量子存储的实验研究中,APPEL等人[10]将钛宝石激光器输出的795nm红外光进行外腔倍频,产生功率为40mW的397.5nm紫光,利用紫光抽运光学参量放大器制备非经典光,并与另一束半导体激光在铷原子气室中通过电磁诱导透明效应实现将1.86dB压缩真空光存储1μs。因此, 利用外腔倍频过程产生抽运源对制备碱金属原子吸收线的非经典光场具有重要意义,国内外已有不少团队开展了相关研究。而根据参考文献[11]~参考文献[13],倍频腔入射腔镜的透射率是影响转换效率的重要参数之一。在铷原子D1线,HAN等人[14]利用由透射率为11.7%的入射腔镜构成的四镜环形倍频腔对795nm红外光进行外腔倍频,获得130mW的397.5nm紫光,对应的转换效率为31%。WEN等人[15]分别采用入射腔镜透射率为5.6%的半整体腔和透射率为7.4%的环形腔进行外腔倍频,获得47mW(转换效率41%)和35mW(转换效率32%)的397.5nm紫光。ZHAI等人[16]利用入射腔镜透射率为5%的环形腔进行外腔倍频,获得40mW紫光,倍频效率为15.3%。在铯原子D2线,VILLA等人[17]对透射率为8%~12%的多种腔镜倍频效果进行比较,获得蓝光的最高功率为330mW,相应倍频效率为55%。DENG等人[18]采用前表面透射率为8%的整体腔进行倍频,获得158mW蓝光,转换效率为45%。TIAN等人[19]采用入射腔镜透射率为10%的环形腔倍频,倍频效率为67%,制备了210mW蓝光。TIAN等人[13]利用透射率为12.5%的环形腔进行外腔倍频,制备了428mW的蓝光,转换效率高达83.1%。

      铯原子D1线的非经典光由于其独特优势[20],在远距离量子信息网络的发展中有着重要的应用前景。南京大学LUO和LIAO等人[21-22]利用倍频及和频过程制备了447.3nm蓝光,但是转换效率只有10%左右。ZHDANOV等人[23]利用内腔倍频过程制备了功率达2.4W的447.3nm蓝光,相应的倍频效率为12.5%。在之前的工作中,作者还利用透射率为5%的入射腔镜构成的驻波倍频腔对350mW半导体激光进行外腔倍频,制备了功率为178mW的单频447.3nm蓝光[24]。利用该倍频腔产生的蓝光,作者又进一步进行了参量下转换等工作[20]。然而,尚未专门开展采用不同透射率入射腔镜对转换效率及功率稳定性影响的实验研究,以获得实验室现有条件下的最佳抽运源。因此,本文作者利用波长对应于铯原子D1线的894.6nm半导体激光作为光源,以周期极化磷酸氧钛钾(periodically poled KTiOPO4,PPKTP) 晶体作为倍频腔的非线性介质,对采用两种不同透射率入射腔镜的驻波倍频腔的转换效率及功率稳定性等参数进行了研究。

    • 实验装置如图 1所示。图中,TA为半导体锥形放大器(tapered amplifier),OI为光隔离器(opitcal isolator), APP为变形棱镜对(anamorphic prism pairs), LIA为锁定放大器(lock-in amplifer), PM为功率计(power meter)。光源由一台半导体激光器(Toptica Photonics, DL100)和半导体锥形放大器(Eagleyard Photonics, EYP-TPA-0915-01500-3006-CMT03-0000)构成。半导体激光器输出功率为28mW、线宽为1MHz的红外光,将其作为种子光注入TA进行功率放大,激光器及TA后各用一个光学隔离器防止后续光路的反馈光。TA由脊型波导构成的单模区和锥形增益区两部分组成,其工作原理是由单模区进行选模从而提供单模低功率激光,该单模低功率激光通过锥形增益区在保证原有激射模式下实现对连续半导体激光的功率放大。

      Figure 1.  Experimental setup

      TA输出激光的空间模式较差,如图 2a所示。因此实验中先利用整形棱镜组对激光整形,然后通过光纤对其进行模式清洁后注入倍频腔,经过模式清洁后获得功率为350mW的基频激光。光纤输出激光光斑如图 2b所示,具有较好空间模式。倍频腔以PPKTP晶体作为非线性介质,倍频腔的结构及具体参数见参考文献[24],在其它参数相同的情况下,本文中设置了基频光透射率分别为5%和10%的两种入射腔镜。倍频腔结构紧凑,整体固定在定制的铝制光学小平台上用来隔离周围噪声,提高了输出蓝光的稳定性。实验中利用内调制稳频技术锁定腔长使基频光共振[25],其核心装置为一台锁相放大器(Stanford Research System,SR830)。图 2c为倍频腔输出蓝光光斑。可以看出其具有非常好的空间模式,有利于下一步作为光学参量振荡器的抽运源进行模式匹配。

      Figure 2.  a—output beam from TA b—fundamental light after shaping c—blue laser by frequency doubling

    • 利用偏振光谱稳频技术将激光器的频率精准锁定到铯原子D1线的F=4(62S1/2)→F′=3(62P1/2)超精细跃迁能级上[26],以保证半导体激光器的稳定输出。在其它条件相同,入射腔镜透射率分别为5%和10%时,逐渐增大注入基频光功率,并调节锁相放大器的参数及晶体的温度,使得倍频腔运转在最佳工作状态,输出蓝光功率变化情况如图 3所示。其中,实线为理论值,图 3a中的圆点和图 3b中的方块分别为使用两种透射率腔镜时测得蓝光实际功率。

      Figure 3.  Output power of blue light versus fundamental power under two di-fferent input couplers

      倍频所得蓝光功率理论值的计算方法如下[11]

      $ \begin{gathered} \sqrt{\eta}\left[2-\sqrt{1-T_1}\left(2-L-\mathit{\Gamma} \sqrt{\frac{\eta P_1}{E_{\mathrm{NL}}}}\right)\right]^2- \\ 4 T_1 \sqrt{E_{\mathrm{NL}}} P_1=0 \end{gathered} $

      (1)

      式中,$\sqrt{\eta}=P_2 / P_1 $为倍频转换效率,P1P2分别为基频光及倍频光功率,T1代表入射腔镜对基频光的透射率,L代表内腔损耗(实际测量值为2.7%),非线性损耗Γ=ENL+ΓabsENL为晶体的单次穿过效率(实际测量值为0.89%/W),Γabs为非线性晶体对产生蓝光的吸收,根据参考文献[18],这里取Γabs=0.1ENL

      图 3可以看出,在注入基频光功率较低时,实际获得蓝光功率与理论值基本相同。然而随着基频光功率的增加,晶体对蓝光和基频光的吸收变强,导致输出蓝光功率越来越低于理论值。在注入基频光功率最大为350mW时,采用透射率T为5%和10%时的入射腔镜分别获得178mW(转换效率50.8%)和131mW(转换效率37.4%)蓝光。理论上,在注入基频光功率最大时,利用两种透射率腔镜倍频所得的蓝光功率应该基本相等,而实际产生的蓝光功率却相差了47mW,转换效率相差13.4%。这种情况的出现,一方面是由于入射腔镜的透射率为5%时更接近最佳透射率[14],另一方面可能是透射率为10%的腔镜的镀膜不够理想,影响了倍频效率。

      图 4显示了在最大注入光功率时,倍频腔输出蓝光功率随时间的起伏。采用透射率T为5%和10%时的倍频腔, 获得蓝光的0.5h功率起伏均方根(root mean square, RMS)分别为1.4%和0.7%,具有较好的功率稳定性。输出蓝光功率下降主要是由于在较高功率密度的蓝光照射下,PPKTP晶体会被损伤,导致晶体的损耗随着时间的增加而变大,但是这种损伤大部分是可逆的,通常几个小时即可自行恢复[27]

      Figure 4.  Blue light power stability in 0.5h

    • 利用以PPKTP晶体作为非线性介质的驻波倍频腔对铯原子D1线半导体激光进行外腔倍频。在注入350mW基频光、入射腔镜透射率为5% 时,倍频效率为50.8%,制备了178mW波长为447.3nm的蓝光,相较于采用透射率为10% 入射腔镜的倍频腔(转换效率37.4%), 获得功率为131mW的蓝光,其0.5h功率起伏为0.7%,具有明显优势。该研究为优化非经典光场所需高质量抽运源打好了基础。

参考文献 (27)

目录

    /

    返回文章
    返回