[1] MEHMET M, EBERLE T, STEINLECHNER S, et al. Demonstration of a quantum-enhanced fiber Sagnac interferometer[J]. Optics Letters, 2010, 35(10): 1665-1667. doi: 10.1364/OL.35.001665
[2] MEHMET M, VAHLBRUCH H, LASTZKA N, et al. Observation of squeezed states with strong photon-number oscillations[J]. Physical Review, 2010, A81(1): 013814.
[3] EBERLE T, STEINLECHNER S, BAUCHROWITZ J, et al. Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection[J]. Physical Review Letters, 2010, 104(25): 251102. doi: 10.1103/PhysRevLett.104.251102
[4] VAHLBRUCH H, MEHMET M, DANZMANN K, et al. Detection of 15dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J]. Physical Review Letters, 2016, 117(11): 11081.
[5] HOFF U B, HARRIS G I, MADSEN L S, et al. Quantum-enhanced micromechanical displacement sensitivity[J]. Optics Letters, 2013, 38(9): 1413-1415. doi: 10.1364/OL.38.001413
[6] POOSER R C, LAWRIE B. Ultrasensitive measurement of microcantilever displacement below the shot-noise limit[J]. Optica, 2015, 2(5): 393-399. doi: 10.1364/OPTICA.2.000393
[7] KIMBLE H J. The quantum internet[J]. Nature, 2008, 453: 1023-1030. doi: 10.1038/nature07127
[8] POLZIK E S, CARRI J, KIMBLE H J. Spectroscopy with squeezed light[J]. Physical Review Letters, 1992, 68(20): 3020-3023. doi: 10.1103/PhysRevLett.68.3020
[9] TURCHETTE Q A, GEORGIADES N P, HOOD C J, et al. Squeezed excitation in cavity QED: Experiment and theory[J]. Phy-sical Review, 1998, A58(5): 4056-4077.
[10] APPEL J, FIGUEROA E, KORYSTOV D, et al. Quantum memory for squeezed light[J]. Physical Review Letters, 2008, 100(9): 093602. doi: 10.1103/PhysRevLett.100.093602
[11] PASCHOTTA R, KüRZ P, HENKING R, et al. 82% efficient continuous-wave frequency doubling of 1.06μm with a monolithic MgO ∶LiNbO3 resonator[J]. Optics Letters, 1994, 19(17): 1325-1327. doi: 10.1364/OL.19.001325
[12] FENG J X, LI Y M, LIU Q, et al. High-efficiency generation of a continuous-wave single-frequency 780nm laser by external-cavity frequency doubling[J]. Applied Optics, 2007, 46(17): 3593-3596. doi: 10.1364/AO.46.003593
[13] TIAN L, WANG Q W, YAO W X, et al. Experimental realization of high-efficiency blue light at 426nm by external frequency doubling resonator[J]. Acta Physica Sinica, 2020, 69(4): 044201(in Chinese). doi: 10.7498/aps.69.20191417
[14] HAN Y S, WEN X, BAI J D, et al. Generation of 130mW of 397.5nm tunable laser viaring-cavity-enhanced frequency doubling[J]. Journal of the Optical Society of America, 2014, B38(8): 1942-1947.
[15] WEN X, HAN Y S, BAI J D, et al. Cavity-enhanced frequency doubling from 795nm to 397.5nm ultra-violet coherent radiation with PPKTP crystals in the low pump power regime[J]. Optics Express, 2014, 22(26): 32293-32300. doi: 10.1364/OE.22.032293
[16] ZHAI Y Y, FAN B, YANG S F, et al. A tunable blue light source with narrow linewidth for cold atom experiments[J]. Chinese Physics Letters, 2013, 30(4): 044209. doi: 10.1088/0256-307X/30/4/044209
[17] VILLA F, CHIUMMO A, GIACOBINO E, et al. High-efficiency blue-light generation with a ring cavity with periodically poled KTP[J]. Journal of the Optical Society of America, 2007, B24(3): 576-580.
[18] DENG X, ZHANG J, ZHANG Y C, et al. Generation of blue light at 426nm by frequency doubling with a monolithic periodically poled KTiOPO4[J]. Optics Express, 2013, 21(22): 25907-25911. doi: 10.1364/OE.21.025907
[19] TIAN J F, YANG C, XUE J, et al. High-efficiency blue light generation at 426nm in low pump regime[J]. Journal of Optics, 2016, 18(5): 055506. doi: 10.1088/2040-8978/18/5/055506
[20] ZHANG Y, LIU J H, MA R, et al. Generation of quadrature squeezed vacuum light field for cesium D1 line[J]. Acta Optica Sinica, 2017, 37(5): 0519001(in Chinese). doi: 10.3788/AOS201737.0519001
[21] LUO G Z, ZHU SH N, HE J L, et al. Simultaneously efficient blue and red light generations in a periodically poled LiTaO3[J]. Applied Physics Letters, 2001, 78(20): 3006-3008. doi: 10.1063/1.1371245
[22] LIAO J, HE J L, LIU H, et al. Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interactions from a single, aperiodically-poled LiTaO3[J]. Applied Physics Letters, 2003, 82(19): 3159. doi: 10.1063/1.1570941
[23] ZHDANOV B V, SHAFFER M K, LU Y L, et al. Perfomance comparison of nonlinear crystals for frequency doubling of an 894nm Cs vapor laser[C]. Proceedings of the SPIE, 2010, 7846: 32-39.
[24] ZHANG Y, LIU J H, WU J Z, et al. Single-frequency tunable 447.3nm laser by frequency doubling of tapered amplified diode laser at cesium D1 line[J]. Optics Express, 2016, 24(17): 19769-19775. doi: 10.1364/OE.24.019769
[25] ZHANG Y, LIU Ch, XIAO Ch Sh, et al. Comparison of frequency locking of 894.6nm frequency doubling cavity using intra-modulation technology and Pound-Drever-Hall technology[J]. Laser Technology, 2017, 41(1): 47-50(in Chinese).
[26] ZHANG Y, MA R, LIU J H, et al. Locking the frequency of the external cavity diode laser at 894.6nm using polarization spectroscopy[J]. Journal of Quantum Optics, 2017, 23(1): 87-91(in Chinese).
[27] TYMINSKI J K. Photorefractive damage in KTP used as second-harmonic generator[J]. Journal of Applied Physics, 1991, 70(10): 5570-5576. doi: 10.1063/1.350194