-
丙烯腈-丁二烯-苯乙烯(acrylonitrile butadiene styrene,ABS)塑料,黑色,密度为1.05g/cm3,成型收缩率为0.4%~0.7%,规格为15mm×15mm×2mm (兴塑塑胶实业有限公司)。实验中所用试剂均为分析纯。
激光源为HLM3350-450-1000-12T型蓝光激光器,功率为1000mW,最小光斑直径为50μm(南通幻影电子有限公司)。
-
基体活化前需要经过前处理,活化前处理工艺如下:
(1) 除油。Na2CO3:35g/L,Na3PO4:25g/L,NaOH:25g/L; 温度60℃; 时间5min~8min,除油后将基体在蒸馏水中洗净。
(2) 粗化。200mL粗化液配方为MnO2:60g/L,V(H3PO4): V(H2SO4)=1.5: 1,将基体放入粗化液60℃水浴加热,时间20min,粗化后在蒸馏水中洗净并干燥。
(3) 活化液配制。CuSO4:10g/L,NaH2PO2:10g/L~ 50g/L,常温溶解,混合过程需要不断进行搅拌。
(4) 活化液涂覆。涂覆次数为1~4次,每次涂覆后,将基体常温下放置8min~10min。
活化液经常温干燥后在基体表面形成一层活化层,用激光对活化层进行扫描,激光能量提供了H2PO2-还原Cu2+所需的活化能,活化层中Cu2+被还原为Cu微粒,从而使基体得到活化。主反应式如下:
$ {\rm{}}{{\rm{H}}_{\rm{2}}}{\rm{PO}}_2^ - {\rm{ + C}}{{\rm{u}}^{{\rm{2 + }}}}{\rm{ + 2O}}{{\rm{H}}^ - } \to {\rm{Cu + }}{{\rm{H}}_{\rm{2}}}{\rm{P}}{{\rm{O}}_{\rm{3}}}{\rm{ + }}{{\rm{H}}_{\rm{2}}} $
(1) 激光活化系统简图如图 1所示。
化学镀铜配方如表 1所示。施镀时间30min,温度35℃。
Table 1. Compositon of electronic plating
bath composition concentration CuSO4 5g/L HCHO 10mL/L C4O6H4KNa 25g/L NaOH 7g/L stabilizer 0.2mg/L surface active agent 7g/L -
表面形貌及成分分析:通过UItra55型高分辨冷场发射扫描显微镜分析系统(德国Carl zeissNTS GmbH)对镀层形貌及成分进行分析。
结合性:采用热循环试验[15]检测镀层结合力。
导电性:采用Fluke 179C型数字万用表(福禄克电子仪器仪表公司)测试镀层导电性。
塑料表面激光选区活化及其电子线路成型
Laser selective activation on plastic surface and its electronic circuit forming
-
摘要: 为了实现低成本的精细电子线路快速成型,以CuSO4和NaH2PO2混合溶液为活化液,涂覆于基体表面形成活化层,采用450nm蓝光激光对基体表面活化层进行扫描,从而使基体活化,并结合化学镀铜,在激光扫描区域制备出了导电金属铜层。研究了CuSO4和NaH2PO2的质量浓度、扫描速率和涂覆次数对镀层成型效果的影响,对活化后的基体进行了能谱分析,通过扫描电镜对各阶段镀层相貌进行了表征,并对镀层的结合性和导电性进行了检测。结果表明,当CuSO4和NaH2PO2的质量浓度分别为10g/L和30g/L、扫描速率为320mm/s、涂覆次数为3次时,镀层覆盖率为100%;激光扫描后,活化层中的Cu2+被还原为Cu微粒;镀层线路微观结构均匀致密、轮廓清晰、边界整齐、结合性强,表面电阻趋近于0Ω,导电性良好。该工艺在一定程度上解决了激光诱导技术可操作性差以及贵金属涂布成本高的问题,具有较高的实用价值,在电子线路成型方面具有一定的应用前景。Abstract: In order to achieve rapid prototyping of fine electronic circuits at low cost, an activation layer was formed on the surface of the matrix by using the mixed solution of CuSO4 and NaH2PO2 as the activator. 450nm blue laser was used to scan the activation layer on the surface of the matrix and the matrix was activated. Combined with electroless copper plating, the conductive metal copper layer was prepared in the laser scanning region. The influence of mass concentration of CuSO4 and NaH2PO2, scanning rate and the number of coating on forming effect of the coating was studied. Energy spectrum analysis of the activated matrix was carried out. The appearance of the coating was characterized by scanning electron microscope. The bonding characteristics and the electrical conductivity of the coating were detected. The results show that coating coverage rate is 100% when mass concentration of CuSO4 and NaH2PO2 is 10g/L and 30g/L, the scanning speed is 320mm/s and coating number is 3. After laser scanning, Cu2+ in the activation layer is reduced to Cu particles. The microstructure of the coating line is uniform and compact with clear contour, neat boundary and strong adhesion. Surface resistance is close to 0Ω, and electrical conductivity is good. This process solves the problem of poor operability of laser induced technology and high cost of precious metal coating to a certain extent. The study has high practical value and has a certain application prospect in electronic circuit forming.
-
Key words:
- laser technique /
- surface modification /
- palladium-free activation /
- electroless plating /
- circuit
-
Table 1. Compositon of electronic plating
bath composition concentration CuSO4 5g/L HCHO 10mL/L C4O6H4KNa 25g/L NaOH 7g/L stabilizer 0.2mg/L surface active agent 7g/L -
[1] JIA Zh G, KONG D L, L D X, et al.Research progress of activation processes for electroless plating on nonmetal substrates[J].Electroplating & Finishing, 2016, 35(16):866-872(in Chinese). [2] HE X T, LIU J X, WU Zh Z, et al.Reseach status of laser treatment on plating surface[J].Hot Working Technology, 2011, 40(10):143-146(in Chinese). [3] LIN Y, LIU Zh H, WANG F, et al.Development of corrosion surface modification technology for magnesium alloys[J].Surface Technology, 2016, 45(4):124-131(in Chinese). [4] ZHU Y, ZHANG Y, WANG X M, et al.Research progress of laser surface modification in preparation of metal-matrix ceramic coatings[J].Modern Chemical Industry, 2014, 34(10):64-67(in Chinese). [5] SONG Ch Y, YAN Y F, LI X Q, et al.Study on silver particles obtained by laser-induced deposition as an activator for electroless copper plating on polyester fabric[J].Electroplating & Finishing, 2015, 34(24):1400-1404(in Chinese). [6] HOU T J, AI J, LIU J G, et al.Selective preparation of metal copper layer on silicate glass by laser surface modification[J].Laser Technology, 2018, 42(2):176-180(in Chinese). [7] XU J, LIAO Y, ZENG H, et al.Mechanism study of femtosecond laser induced selective metallization (FLISM) on glass surfaces[J].Optics Communications, 2008, 281(13):3505-3509. doi: 10.1016/j.optcom.2008.03.017 [8] ZHENG J, CHEN C H, LIU J G, et al.Process for producing conductive circuit of printed circuit board by laser induced liquid phase deposition: CN1377220[P]. 2002-10-30(in Chinese). [9] LU Q H, WANG Zh G, ZHU Z K, et al. Photoselective deposition of copper lines on ABS substrates by electroless plating[J].Functional Materials, 2000, 31(1):95-97(in Chinese). [10] CHEN D Sh.Method for laser induced selective chemical plating on polyimide film: CN1772948[P]. 2006-05-17(in Chinese). [11] PING Y Q, JIANG K Y.Experimental studies about purlsed laser modiifed polyurethane surface chemical copperplating without palladium[J].Engineering Plastics Application, 2015, 43(3):54-59(in Chinese). [12] PAN C T. Selective electroless copper plating micro-coil assisted by 248nm excimer laser[M]. Amsterdam, Netherland:Elsevier Science Ltd, 2004:62-75. [13] KORDÁS K, REMES J, LEPPÄVUORI S, et al. Laser-assisted selective deposition of nickel patterns on porous silicon substrates[J]. Applied Surface Science, 2001, 178(1):93-97. [14] WANG X C, ZHENG H Y, LIM G C. Laser induced copper electroless plating on polyimide with Q-switch Nd:YAG laser[J]. Applied Surface Science, 2002, 200(1):165-171. [15] FENG L, ZHU M B.Quality management of modern electronic assembly[M].Xi'an:Xidian University Press, 2009:84-91(in Chinese).