Research process of data processing technology of full-waveform airborne laser radars
-
摘要: 全波形机载激光雷达可以直接快速获取地面特征点的3维空间位置,相比于其它测绘方法,全波形机载激光雷达在一定程度上性能更优。首先介绍了全波形机载激光雷达激光测距的工作原理,随后讨论了全波形机载激光雷达数据处理的一般性方法,并总结了其数据处理技术国内外研究现状的主要进展,最后归纳了全波形激光雷达数据处理研究中的关键问题,在此基础上对其数据处理的研究前景进行了展望。Abstract: 3-D space position of ground feature points can be quickly obtained by full-waveform airborne laser radars. Compared to other surveying and mapping methods, a full-waveform airborne laser radar has better performance to a certain extent. Firstly, the laser ranging principle of a full-waveform airborne laser radar is introduced. Then the general method of data processing for full-waveform airborne lidar is discussed. The main progress and the research status of data processing technology at home and abroad are summarized. Finally, the key problems in the research of full-waveform lidar data processing are summarized. On this basis, the research prospect of data processing is prospected.
-
Keywords:
- laser technique /
- laser range finder /
- data processing /
- deconvolution /
- waveform decomposition
-
-
[1] ZHANG X H. Theory and method of airborne lidar measurement technology[M]. Wuhan:Wuhan University Press, 2007:9-17(in Chinese).
[2] WANG J H, LI Ch R, ZHOU M. Airborne full-waveform lidar data processing and application[J]. Foreign Electronic Measurement Techonolgy, 2012, 31(6):71-75(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/chtb201301003
[3] WANG J H. Research on the key techniques of the airbornelidar data processing[D]. Wuhan: Huazhong University of Science and Technology, 2012: 5-8(in Chinese).
[4] HE L. Research on small-footprint als full-waveform data processing technology[D]. Chengdu: University of Electronic Science and Technology of China, 2015: 1-34(in Chinese).
[5] XU G C. Research on airborne lidar waveform data processing and classifying[D]. Nanjing: Nanjing Forestry University, 2010: 13-17(in Chinese).
[6] JUTZI B, STILLA U. Range determination with waveform recording laser systems using a wiener filter[J]. ISPRS Journal Photogrammetry and Remote Sensing, 2006, 61(2):95-107. DOI: 10.1016/j.isprsjprs.2006.09.001
[7] ANDREAS R, GUNTHER B, NORBERT P. B-spline deconvolution for differential target cross-section determination in full-waveform laser scanning data[J]. ISPRS Journal Photogrammetry and Remote Sen-sing, 2011, 66(4):418-428. DOI: 10.1016/j.isprsjprs.2011.02.002
[8] AZADBAKHT M, FRASER C, KHOSHELHAM K. A sparsity-based regularization approach for deconvolution of full-waveform airborne lidar data[J]. Remote Sensing, 2016, 8(8):648-674. DOI: 10.3390/rs8080648
[9] SHEN X, LI Q Q, WU G, ZHU J. Decomposition of lidar waveforms by b-spline-based modeling[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 128(6):182-191. http://www.sciencedirect.com/science/article/pii/S0924271616303306
[10] ZHOU T, POPESCU SC, KRAUSE K, et al. Gold-a novel deconvolution algorithm with optimization for waveform lidar processing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 129(7):131-150. http://www.sciencedirect.com/science/article/pii/S0924271616304968
[11] JIAO Y T, XING Y Q, HUO D, et al. A review on full-waveform airborne lidar data processing and it application to forestry[J]. World Forestry Research, 2015, 28(3):42-46(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/sjlyyj201503008
[12] WAGNER W, ULLRICH A, MELZER T, et al. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60(2):100-112. DOI: 10.1016/j.isprsjprs.2005.12.001
[13] CHAUVE A, MALLET C, BRETAR F, et al. Processing full waveform lidar data:modeling raw signals[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2007, 36(52):102-107.
[14] BRUGGISSER M, RONCAT A, SCHAEPMAN M E, et al. Retrie-val of higher order statistical moments from full-waveform lidar data for tree species classification.Remote Sensing of Environment, 2017, 129(7):28-41. http://www.sciencedirect.com/science/article/pii/S0034425717301840
[15] XU F. Research and implementation of en/decoding and signal processing technologies for array-modulated 3-D imaging lidar[D]. Nanjing: Nanjing University, 2016: 71-87(in Chinese).
[16] AZADBAKHT M, FRASER C S, ZHANG C, et al. A signal denoising method for full-waveform lidar data[C]//ISPRS Workshop Laser Scanning 2013. Germany: Copernicus GmbH, 2013: 31-36.
[17] DAI C. Lidar echo signal enhancement and waveform decomposition[D]. Nanjing: Nanjing University, 2016: 21-31(in Chinese).
[18] LIANG M, MA K. Study on the method of echo signal denoising based on gauss filter[J]. Geomatics and Spatial Information Technology, 2017, 40(1):40-42(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbch201701011
[19] SODERMAN U, PERSSON A, TOPEL J, et al. On analysis and visualization of full-waveform airborne laser scanner data[C]//Conference on Laser Radar Technology and Applications Ⅹ. Orlando, USA: International Society for Optics and Photonics, 2005: 184-192.
[20] MA H Ch, LI Q. Modified em algorithm and its application to the decomposition of laser scanning waveform data[J]. Journal of Remote Sensing, 2009, 13(1):35-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxb200901004
[21] LIN Y C, MILLS J P, SMITHVOYSEY S, et al. Rigorouspulse detection from full-waveform airborne laser scanning data[J]. International Journal of Remote Sensing, 2010, 31(5):1303-1324. DOI: 10.1080/01431160903380599
[22] LAI X D, QIN N N, HAN X Sh, et al. Iterative decomposition method for foot-print lidar waveform[J]. Journal of Infrared and Mi-llimeter Waves, 2013, 32(4):319-324(in Chinese). DOI: 10.3724/SP.J.1010.2013.00319
[23] DUAN Y H, ZHANG A W, LIU Zh, et al. A gaussian inflexion points matching method for gaussian decomposition of airborne lidar waveform data[J]. Laser and Optoelectronics Progress, 2014, 51(10):102801(in Chinese). DOI: 10.3788/LOP
[24] ZHAO Q H, LI H Y, LI Y. Gaussian mixture model with variable components for full waveform lidar data decomposition and RJMCMC algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(12):1367-1377(in Chinese).
[25] WANG S Y, MA H Ch, WANG J D, et al. Gaussian decomposition of full-waveform lidar based on grouping LM algorithm[J]. Geoma-tics and Spatial Information Technology, 2016, 39(7):144-147(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-DBCH201607046.htm
[26] DAI C, WANG Y Q, XU F. 3-D lidar echo decomposition based on partical swarm optimization[J]. Laser Technology, 2016, 40(2):284-287(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201602028.htm
[27] LIANG M, WANG R L, LI G X. Study of decomposition based on full-waveform lidar data[J]. Geomatics World, 2016, 23(5):51-54(in Chinese).
-
期刊类型引用(2)
1. 杨翠, 吴冰, 樊炳倩. 基于数学分析的高斯光束光斑半径测量方法. 激光杂志. 2020(07): 194-198 . 百度学术
2. 靳龙, 张兴强. 圆形周期介质内艾里光束的传输特性. 激光技术. 2019(03): 432-436 . 本站查看
其他类型引用(1)