Characteristics of Airy beam propagating in circular periodic media
-
摘要: 为了研究无衍射光波在特异材质内的传输特性,实现更优良的光波通信,将传统右手材料和双负折射率材料相结合,提出了一种轴向阶跃变化周期圆形介质结构。基于广义惠更斯-菲涅耳光学积分公式,结合光学传输矩阵,分析了艾里光束在这种传输媒质中出射表面光强分布特性和侧面传输光强分布图;分析了负折射率参量对这类光波演变的影响及其补偿机理;分析了实现输出光波完美还原时,负折射率大小同介质单元长度的定量关系。结果表明,当介质孔径逐渐减小时,有限艾里光束衍射效应越来越严重,并且出射光强外形轮廓逐渐从艾里光束过渡到高斯光束;当双负折射率材料的折射率nl的绝对值大于右手材料的折射率nr时,出射表面实现光波完美还原的双负折射率材料单元层越长,反之则越短。该研究对分析周期或准周期轴向阶跃变化的圆形平板介质光波通信是有帮助的。
-
关键词:
- 激光光学 /
- 光强演变 /
- 有限艾里光束 /
- 广义惠更斯-菲涅耳光学公式 /
- 传输矩阵
Abstract: In order to study the propagation characteristics of non-diffracting light waves in special materials and achieve better optical communication, one periodic circular dielectric structure with axial step change was proposed by combining traditional right-handed materials with bi-negative refractive index materials. Based on the generalized Huygens-Fresnel optical integral formula, the distribution characteristics of the emitted surface light intensity and the profile of the side light intensity of the Airy beam in this transmission medium were analyzed by using optical transmission matrix. The influence of negative refractive index parameters on the evolution of such light waves and its compensation mechanism were analyzed. The quantitative relationship between the negative refractive index and the length of the dielectric unit was analyzed when the output light wave was perfectly restored. The results show that, when the pore size of the medium decreases gradually, the diffraction effect of finite Airy beam is getting worse and worse. The profile of the emitted light intensity gradually transits from the Airy beam to the Gaussian beam. When the absolute value of nl is greater than nr, the bi-negative refractive index material layer is longer when the perfect light wave reduction is achieved on the exit surface. Conversely, the shorter. The study is helpful for analyzing optical wave communication in circular flat dielectrics with periodic or quasi-periodic axial step changes. -
-
Figure 2. Intensity distribution of FAiB with different aperture sizes
a—RHM cross section,r=0.1mm b—RHM cross section,r=0.5mm c—RHM cross section,r=1mm d—RHM cross section,r=10mm e—DNM cross section, r=0.5mm f—DNM cross section, r=1mm g—DNM cross section,r=10mm h—side transmission view, r=0.1mm i—side transmission view, r=0.5mm j—side transmission view, r=10mm
-
[1] SIVILOGLOU G A, BROKY J, DOGARIU A, et al. Observation of accelerating Airy beams[J]. Physical Review Letters, 2007, 99(21):213901. DOI: 10.1103/PhysRevLett.99.213901
[2] BERRY M V, BALAZS N L. Nonspreading wave packets[J]. American Journal of Physics, 1998, 47(3):264-267. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231218254/
[3] VOLOCHBLOCH N, LEREAH Y, LILACH Y, et al. Generation of electron Airy beams[J]. Nature, 2013, 494(7437):331-335. DOI: 10.1038/nature11840
[4] HALIL T E, EMRE S. Partially coherent Airy beam and its propagation in turbulent media[J]. Applied Physics, 2013, B110(4):451-457. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=976f9cc2227e99f54cf013fb6885d079
[5] JIA X L, WANG X O, ZHOU Zh X, et al. Latest progress on chiral negative refractive index metamaterials[J]. Chinese Optics, 2015, 8(4):548-556(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGGA201504004.htm
[6] PU M B, WANG Ch T, WANG Y Q, et al. Subwavelength electro-magnetics below the diffraction limit[J]. Acta Physica Sinica, 2017, 66(14):144101(in Chinese).
[7] GRISSÁNCHEZ I, RAS D V, BIRKS T A. The Airy fiber:an optical fiber that guides light diffracted by a circular aperture[J].Optica, 2016, 3(3):1-11. http://cn.bing.com/academic/profile?id=6299cf5df219e81613ab4c9ac4ceb6d9&encoded=0&v=paper_preview&mkt=zh-cn
[8] QUAN X, YANG X. Band rules for the frequency spectra of three kinds of aperiodic photonic crystals with negative refractive index materials[J]. Chinese Physics, 2009, B(12):5313-5325. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwl-e200912033
[9] XU J, SU A, ZHOU L P, et al. Dual optical filtering function of the photonic crystal made of LHM and RHM[J]. Laser Technology, 2018, 42(4):550-550(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201804022
[10] SZTUL H I, ALFANO R R. The poynting vector and angular momentum of Airy beams[J]. Optics Express, 2008, 16(13):9411-9416. DOI: 10.1364/OE.16.009411
[11] HENNANI S, EZZARIY L, BELAFHAL A. Radiation forces on a dielectric sphere produced by finite olver-gaussian beams[J]. Optics & Photonics Journal, 2015, 5(12):344-353. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4236_opj.2015.512033
[12] WEI Y, ZHU Y Y. Analysis of phase change of Laguerre-Gaussian vortex beam during propagation[J]. Laser Technology, 2015, 39(5):723-726(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201505029
[13] XU S D, FENG Y X. Study on propagation properties of Airy beams through negative index medium[J]. Acta Photonica Sinica, 2015, 44(2):0208002(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-GZXB201502038.htm
[14] VAVELIUK P, MARTINEZMATOS O. Negative propagation effect in nonparaxial Airy beams[J]. Optics Express, 2012, 20(24):26913. DOI: 10.1364/OE.20.026913
[15] LIN H, PU J. Propagation of Airy beams from right-handed material to left-handed material[J]. Chinese Physics, 2012, B21(5):221-226. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwl-e201205034
[16] JIN L, ZHANG X. Propagation properties of airy beam through periodic slab system with negative index materials[J]. International Journal of Optics, 2018, 11(1):1-7. http://cn.bing.com/academic/profile?id=0bf590e5315d40c145a2a7dadc54f49b&encoded=0&v=paper_preview&mkt=zh-cn
[17] SHADRIVOV I V, SUKHORUKOV A A, KIVSHAR Y S. Beam shaping by a periodic structure with negative refraction[J]. Applied Physics Letters, 2003, 82(22):3820-3822. DOI: 10.1063/1.1579849
[18] XIE X X, WANG S C, WU F T. Diffraction optical field of the Bessel beam through elliptical annular aperture[J]. Acta Physica Sinica, 2015, 64(12):124201(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201512014
[19] LIU H, LÜ Y, XIA J, PU X, et al. Propagation of an Airy-Gaussian beam passing through the ABCD optical system with a rectangular aperture[J]. Optics Communications, 2015, 355:438-444. DOI: 10.1016/j.optcom.2015.07.017
[20] GU J, YANG P, ZHU Q. Propagation characteristics of Gaussian beams through 2×2 square matrix circular apertures[J]. Optik-International Journal for Light and Electron Optics, 2012, 123(20):1817-1819. DOI: 10.1016/j.ijleo.2011.12.061
[21] GHATAK A. Optics[M]. Beijing:Higher Education Press, 2009:67-68(in Chinese).
[22] SHAN C M, SUN H Y, ZHAO Y Zh. Study of far-field interference pattern for coherent Gaussian beams based on Mach-Zehnder interferometer[J]. Laser Technology, 2017, 41(1):113-119(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201701023
[23] PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18):3966. DOI: 10.1103/PhysRevLett.85.3966
-
期刊类型引用(2)
1. 何小波,焦石. 基于相位调制技术的可见光通信系统码间干扰识别研究. 激光杂志. 2021(01): 144-148 . 百度学术
2. 韩中达,赵黎,王栋,杨博瑞. 兼顾照明的可见光流媒体信息传输装置研究. 激光杂志. 2020(07): 128-132 . 百度学术
其他类型引用(0)