-
与EIT三能级系统相似,PIT模型一般也存在一个基态|0〉和两个激发态|1〉和|2〉。允许跃迁|0〉→|1〉和禁止跃迁|0〉→|2〉分别对应的是亮模式谐振和在暗模式谐振。激发态|1〉和|2〉之间的过渡对应的是亮暗模式之间的耦合,该耦合会引起一个通过|0〉→|1〉和|0〉→|1〉→|2〉→|1〉途径的干涉相消,从而导致在狭窄的频带内形成一个PIT窗口。在PIT超材料中,这种干涉可以用洛伦兹线型模型表示为[20]:
$ \begin{align} &p\prime\prime \left( t \right){{\omega }_{\text{b}}}^{-2}+{{\gamma }_{1}}p\prime \left( t \right){{\omega }_{\text{b}}}^{-1}+p\left( t \right)= \\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ f\left( t \right)-\kappa q(t) \\ \end{align} $
(1) $ q\prime\prime \left( t \right){{\omega }_{\text{d}}}^{-2}+{{\gamma }_{2}}q\prime \left( t \right){{\omega }_{\text{d}}}^{-1}+q\left( t \right)=-\kappa q(t)~ $
(2) 式中,ωb为亮模式的谐振频率,γ1为亮模式阻尼率,ωd为暗模式的谐振频率,γ2为暗模式阻尼率,f(t)代表外界场的强度,p(t)代表亮模式激励源的强度,q(t)为暗模式激励源的强度; 亮模式的谐振频率ωb和阻尼率γ1是由外界场f(t)以及激励源p(t)所控制的,而暗模式的谐振频率ωd和阻尼率γ2是由激励源q(t)所控制的,且满足|ωd-ωb|=ωb; κ是两种谐振器之间的谐振系数。(1)式和(2)式可以在频域中由$ p\left( t \right)=\tilde{p}\left( \omega \right){{\text{e}}^{-\text{i}\omega t}}$和$q\left( t \right)=\tilde{q}\left( \omega \right){{\text{e}}^{-\text{i}\omega t}} $来表达:
$ \tilde p\left( \omega \right) = \frac{{{D_{\rm{d}}}\left( \omega \right)\tilde f\left( \omega \right)}}{{{D_{\rm{d}}}\left( \omega \right){D_{\rm{b}}}\left( \omega \right) - {\kappa ^2}}} $
(3) $ \tilde q\left( \omega \right) = \frac{{\kappa \tilde f\left( \omega \right)}}{{{D_{\rm{d}}}\left( \omega \right){D_{\rm{b}}}\left( \omega \right) - {\kappa ^2}}} $
(4) 其中:
$ {D_{\rm{b}}}\left( \omega \right) = 1 - {\left( {\frac{\omega }{{{\omega _{\rm{b}}}}}} \right)^2} - {\rm{i}}{\gamma _1}\left( {\frac{\omega }{{{\omega _{\rm{b}}}}}} \right){\rm{ }} $
(5) $ {D_{\rm{d}}}\left( \omega \right) = 1 - {\left( {\frac{\omega }{{{\omega _{\rm{d}}}}}} \right)^2} - {\rm{i}}{\gamma _2}\left( {\frac{\omega }{{{\omega _{\rm{d}}}}}} \right){\rm{ }} $
(6) 式中,ω代表当前频率,是因变量,随着ω的变化,接下来一系列参量也会随之变化。$ \tilde{f}\left( \omega \right)$代表了外界场f(t)经过傅里叶变换由时域变为频域、由频率ω影响的变量。
如果超材料的厚度比入射波长小得多,就可以用磁导率χ来描述外部辐射的响应。由于在该结构中铝的厚度仅为200nm,因此磁导率和透过率可分别表达为:
$ \chi \approx \frac{{\tilde p\left( \omega \right)\beta }}{{\tilde f\left( \omega \right)}} = \frac{{\beta {D_{\rm{d}}}\left( \omega \right)}}{{{D_{\rm{d}}}\left( \omega \right){D_{\rm{b}}}\left( \omega \right) - {\kappa ^2}}} $
(7) $ \left| {\tilde t} \right| = \left| {\frac{{c\left( {1 + n} \right)}}{{c\left( {1 + n} \right) - {\rm{i}}\omega \chi }}} \right| $
(8) 式中,β为静态表面电导率,${\tilde{t}} $为结构的透过率,c为光速,n为衬底的折射率。
由(8)式可以得到该数值模型在I形金属棒不断移动时的透过率谱。由于对该数值模型进行讨论时,对衬底的损耗忽略不计,所以图 7中所得的透过率会比仿真的透过率大。与仿真结果一样,当x=0μm时,透过率谱上只出现了一个谐振峰,此时耦合系数κ很小,代表明、暗模式之间耦合较弱。随着x值的增大,明、暗模式谐振器的耦合系数κ也会随之增大,使得PIT窗口不断加宽。
可调谐太赫兹等离子诱导透明的研究
Study on transparency structure induced by tunable terahertz plasmon
-
摘要: 为了获得一个较宽的等离子诱导透明(PIT)窗口,提出了一种双层可调谐的太赫兹超材料结构。采用仿真方法对该结构的透过率谱、电场图和电流图进行了分析,并通过数学模型分析了透射窗口形成机理。结果表明,该结构可以使亮模式谐振器的移动空间更大,而且可以得到一个较宽的透射窗口;该结构能通过平移I形金属棒的位置进而控制PIT窗口的宽度。仿真结果与理论结果拟合得很好。Abstract: In order to obtain a wider plasma induced transparency (PIT) window, a dual layer tunable terahertz metamaterial structure was proposed. The transmission spectrum, electric field diagram and current diagram of the structure were simulated and analyzed. The formation mechanism of transmission window was analyzed by a mathematical model. The results show that the structure makes the move space of light-mode resonator wider and a wider transmission window can be obtained. The structure can change the width of PIT window by moving the position of I-shaped metal bar. The simulation results are well fitted with the theoretical results.
-
Figure 6. PIT structure and current distribution when the thickness of polyimide layer is 10μm
a—PIT structure with x=0μm b—electric field distribution with x=0μm, frequency of 0.305THz, and current intensity of 0A/m~32936A/m c—PIT structure with x=20μm d—electric field distribution with x=20μm, frequency of 0.326THz, and current intensity of 0A/m~16138A/m
-
[1] FLEISCHHAUER M, PHYSIK F. Electromagnetically induced transparency:Optics in coherent media[J]. Reviews of Modern Physics, 2005, 77(2):633-673. doi: 10.1103/RevModPhys.77.633 [2] YANG L J, ZHANG L Sh, LI X L, et al. The study of the electromagnetic induced transparency in multi-window tunable[J]. Journal of Physics, 2006, 55(10):5206-5210(in Chinese). [3] MONAT C, de STERKE M, EGGLETON B J. Slow light enhanced nonlinear optics in periodic structures[J]. Journal of Optics, 2010, 12(10):104003. doi: 10.1088/2040-8978/12/10/104003 [4] BOYD R W. Material slow light and structural slow light:similarities and differences for nonlinear optics [Invited] [J]. Journal of the Optical Society of America, 2011, B28(12):A38-A44. [5] KRAUSS T F. Why do we need slow light?[J]. Nature Photonics, 2008, 2(8):448-450. doi: 10.1038/nphoton.2008.139 [6] PHILLIPS D F, FLEISCHHAUER A, MAIR A, et al. Storage of light in atomic vapor[J]. Physical Review Letters, 2000, 86(5):783-786. [7] CHEN H T, O'HARA J F, AZAD A K, et al. Manipulation of terahertz radiation using metamaterials[J]. Laser & Photonics Reviews, 2011, 5(4):513-533. [8] WAN M, SONG Y, ZHANG L, et al. Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings[J]. Optics Express, 2015, 23(21):27361-27368. doi: 10.1364/OE.23.027361 [9] ZHU Z, YANG X, GU J, et al. Broadband plasmon induced transparency in terahertz metamaterials[J]. Nanotechnology, 2013, 24(21):214003. doi: 10.1088/0957-4484/24/21/214003 [10] YANG X, YU M, KWONG D L, et al. All-optical analog to electromagnetically induced `transparency in multiple coupled photonic crystal cavities[J]. Physical Review Letters, 2009, 102(17):173902. doi: 10.1103/PhysRevLett.102.173902 [11] XU Q, SANDHU S, POVINELLI M L, et al. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency[C]//Lasers and Electro-Optics, 2006 and 2006 Quantum Electronics and Laser Science Conference. New York, USA: IEEE, 2006: 1-2. [12] ALZAR C L G, MARTINEZ M A G, NUSSENZVEIG P. Classical analog of electromagnetically induced transparency[J]. American Journal of Physics, 2001, 70(1):37-41. [13] SINGH R, AL-NAIB I A I, YANG Y, et al. Observing metamaterial induced transparency in individual Fano resonators with broken symmetry[J]. Applied Physics Letters, 2011, 99(20):201107. doi: 10.1063/1.3659494 [14] PARVINNEZHAD H M, PHILIP E, RIVERA E, et al. Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators[J]. Scientific Reports, 2015, 5(1):15735. doi: 10.1038/srep15735 [15] BAI Y, CHEN K, LIU H, et al. Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect[J]. Optics Communications, 2015, 353:83-89. doi: 10.1016/j.optcom.2015.05.005 [16] CHEN X, FAN W H. Plasmon-induced transparency in terahertz planar metamaterials[J]. Optics Communications, 2015, 356:84-89. doi: 10.1016/j.optcom.2015.07.063 [17] HAN J, GU J, TIAN Z, et al. Plasmon-induced transparency in terahertz metamaterials[C]//International Conference on Infrared, Millimeter, and Terahertz Waves. New York, USA: IEEE, 2012: 1-2. [18] TAUBERT R, HENTSCHEL M, KÄSTEL J, et al. Classical analog of electromagnetically induced absorption in plasmonics[J]. Nano Letters, 2012, 12(3):1367-1371. doi: 10.1021/nl2039748 [19] LIU N, LANGGUTH L, WEISS T, et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit[J]. Nature Materials, 2009, 8(9):758-762. doi: 10.1038/nmat2495 [20] TASSIN P, ZHANG L, ZHAO R, et al. Electromagnetically induced transparency and absorption in metamaterials:the radiating two-oscillator model and its experimental confirmation[J]. Physical Review Letters, 2012, 109(18):187401. doi: 10.1103/PhysRevLett.109.187401