-
试验材料为(α+β)Ti-6Al-4V钛合金薄板,切成规格为26mm×20mm×4mm试样。表 1中为样品的化学构成。激光冲击前,所有试样在760℃退火2h然后空冷至室温,紧接着样本表面用砂纸抛光,最后用无水乙醇清洗干净。表 2中为实验过程中关键激光冲击参量。
Table 1. Chemical composition(mass fraction) of Ti-6Al-4V alloy
Al V Fe Si C Ti 0.05~0.068 0.035~0.045 ≤0.003 ≤0.001 ≤0.001 balance Table 2. Technique parameters of laser implements
laser wavelength/nm spot diameter/mm pulse energy/J repetition rate/Hz laser pulse width/ns 1064 3 7.9 5 10 激光冲击强化是一种利用冲击波的力学效应对材料表面进行改性的技术。激光冲击强化技术的原理[10, 15-17](见图 1)是:当高峰值功率密度(大于109W/cm2)、短脉冲(10ns~20ns)的激光通过约束层(1mm水层)作用靶材表面时,金属表面的吸收层(0.1mm厚铝箔)吸收激光能量发生爆炸性气化蒸发产生高温高压等离子体,该等离子体受到约束层的约束,形成高压冲击波(GPa量级),冲击波的力效应引起材料表层产生塑性变形以及微观组织的变化,并在较深的厚度上残留压应力,从而显著提高金属材料综合性能。
激光冲击过程中,激光器能量为7.9J,脉冲宽度为10ns,光斑直径为3mm,约束层和吸收层分别选用水和铝箔。冲击波峰压力值应遵循Fabbro模型[23]:
$ 2.0{\sigma _{{\rm{HEL}}}} \le p \le 2.5{\sigma _{{\rm{HEL}}}} $
(1) 式中,p为激光冲击波峰值压力(单位为GPa);σHEL为金属材料的Hugoniot弹性极限(Hugoniot elastic limit, HEL)(单位为GPa)。对于Ti-6Al-4V,计算的HEL为1.6GPa,激光诱导冲击波压力为3.69GPa。本文中,Ti-6Al-4V钛合金样本冲击次数为1次、2次、3次、5次、7次和10次。每次冲击后更换铝箔。
-
实验中采用HXD-1000TMSC/LCD型显微硬度计对激光冲击材料后的表面进行硬度测量,加载载荷1.96N,加载时间10s,多次测量取平均值。采用日本JEM-2100(HR)型高分辨透射电子显微镜(high resolution transmission electron microscopy,HRTEM)对冲击试样表层的显微组织结构进行观察。激光冲击后,将需要做透射电子显微镜(transmission electron microscope, TEM)的试样线切割成厚度约1mm的薄片, 然后用金相砂纸进行细磨至0.1mm左右厚度薄片,最后进行电子减薄。
多次激光冲击Ti-6Al-4V钛合金表面纳米化研究
Nanocrystallization of Ti-6Al-4V alloy by multiple laser shock processing
-
摘要: 为了研究激光冲击Ti-6Al-4V钛合金下的表面纳米化和微观结构的演变特性,采用短脉冲Nd:YAG激光器对Ti-6Al-4V钛合金表面分别进行了激光冲击实验,得到了不同激光冲击次数下钛合金表面的微观组织和相应表面硬度。随着激光冲击次数增加,晶粒尺寸逐渐减小并形成纳米晶粒;冲击3次以上时,纳米晶数量明显增多、尺寸分布更加均匀,表面出现取向更加随机的等轴纳米晶;冲击5次后,随着冲击次数增加,钛合金表面纳米晶粒尺寸没有出现明显降低的趋势,始终保持50nm~130nm;不同冲击次数下纳米层的深度不会明显增加,纳米层深度约为15μm~20μm;冲击次数5次以上后,钛合金表面硬度趋于稳定,最大值约为525HV~530HV。结果表明,Ti-6Al-4V钛合金表面纳米化程度随着激光冲击次数的增加而提高;在5次激光冲击后钛合金表面的纳米化程度达到渐饱和状态,表面具有分布较好的纳米晶和较高的硬度。这表明多次激光冲击钛合金表面可以实现晶粒从微米级向纳米级转化。
-
关键词:
- 激光技术 /
- 纳米晶 /
- Ti-6Al-4V钛合金 /
- 微观结构 /
- 硬度
Abstract: In order to study the surface nanocrystallization and microstructure evolution of Ti-6Al-4V alloy, the samples of Ti-6Al-4V alloy were peened with different times by using short-pulse Nd:YAG laser, the corresponding surface microstructure and microhardness were obtained. With the increase of the number of laser impact, the grain size gradually decreased and nanocrystals were formed. After more than three impacts, the number of nanocrystals obviously increased with a more uniform size distribution and the orientation of equiaxed nanocrystals on the surface became more random. After more than 5 times of laser impacts, the nanocrystalline grain size of Ti-6Al-4V titanium alloy did not decrease significantly with the increase of the number of laser impacts, and maintained at 50nm~130nm. The depth of the nanostructure layer was not increased obviously and was about 15μm~20μm. After more than 5 times of laser impacts, the titanium alloy surface hardness tended to be stable, and the maximum hardness was about 525HV~530HV. The results show that the nanocrystallization degree of Ti-6Al-4V titanium alloy improves with the increase of the number of laser impacts. After five impacts, the nanocrystallization of the titanium alloy surface is saturated. The surface has a better nanocrystalline distribution and higher hardness. The study indicates that the surface of titanium alloy through multiple laser impacts can prompt the grain size transformation from micron to nanometer.-
Key words:
- laser technique /
- nanocrystals /
- Ti-6Al-4V titanium alloy /
- microstructure /
- hardness
-
Table 1. Chemical composition(mass fraction) of Ti-6Al-4V alloy
Al V Fe Si C Ti 0.05~0.068 0.035~0.045 ≤0.003 ≤0.001 ≤0.001 balance Table 2. Technique parameters of laser implements
laser wavelength/nm spot diameter/mm pulse energy/J repetition rate/Hz laser pulse width/ns 1064 3 7.9 5 10 -
[1] ZENG L Y, ZHAO Y Q, HONG Q, et al. Research and development of high temperature titanium alloys at 600℃[J]. Titanium Industry Progress, 2012, 29(5):1-5(in Chinese). [2] FU Y Y, SONG Q M, HUI S X, et al. Research and application of typical aerospace titanium alloys[J]. Chinese Journal of Rare Metals, 2006, 30(6):850-856(in Chinese). [3] XU G D, WANG F E. Development and application on high-temperature Ti-based alloys[J]. Chinese Journal of Rare Metals, 2008, 32(6):774-780(in Chinese). [4] LU K, LU J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment[J]. Materials Science and Engineering, 2004, A375/377(1):38-45. [5] WEN M, LIU G, GU J F, et al. Dislocation evolution in titanium during surface severe plastic deformation[J]. Applied Surface Science, 2009, 255(12):6097-6102. doi: 10.1016/j.apsusc.2009.01.048 [6] ZHU K Y, VASSEL A, BRISSET F, et al. Nanostructure formation mechanism of α-titanium using SMAT[J]. Acta Materialia, 2004, 52(14):4101-4110. doi: 10.1016/j.actamat.2004.05.023 [7] GUO Zh Q, GE L L, YUAN H, et al. Surface nano-crystallization of TC4 titanium alloy and its thermal stability[J]. Transactions of Materials and Heat Treatment, 2012, 33(3):114-118(in Chinese). [8] DING H, SHIN Y C. Dislocation density-based modeling of subsurface grain refinement with laser-induced shock compression[J]. Computational Materials Science, 2012, 53(1):79-88. [9] LIU H X, HU Y, WANG X, et al. Grain refinement progress of pure titanium during laser shock forming (LSF) and mechanical property characterizations with nanoindentation[J]. Materials Science and Engineering, 2013, A564(564):13-21. [10] REN X D, ZHOU W F, LIU F F, et al. Microstructure evolution and grain refinement of Ti-6Al-4V alloy by laser shock processing[J]. Applied Surface Science, 2016, 363:44-49. doi: 10.1016/j.apsusc.2015.11.192 [11] HU Z R, TONG G Q, CHEN Ch J, et al. Technology of laser nano-material surface engineeering[J]. Laser Technology, 2014, 38(6):764-770(in Chinese). [12] CHE Z, YANG J, GONG S, et al. Self-nanocrystallization of Ti-6Al-4V alloy surface induced by laser shock processing[J]. Rare Metal Materials and Engineering, 2014, 43(5):1056-1060. doi: 10.1016/S1875-5372(14)60100-4 [13] ZHANG J W, LUO X M, MA H, et al. Surface nano-crystallization of aero-aluminum alloy 2A02 induced by laser shocking[J]. Heat Treatment of Metals, 2011, 36(9):22-26(in Chinese). [14] LIU Y G, LI M Q, LIU H J. Surface nanocrystallization and gradient structure developed in the bulk TC4 alloy processed by shot peening[J]. Journal of Alloys and Compounds, 2016, 685:186-193. doi: 10.1016/j.jallcom.2016.05.295 [15] LOU S, LI Y, ZHOU L, et al. Surface nanocrystallization of metallic alloys with different stacking fault energy induced by laser shock processing[J]. Materials & Design, 2016, 104:320-326. [16] ZHOU L, HE W, LUO S, et al. Laser shock peening induced surface nanocrystallization and martensite transformation in austenitic stainless steel[J]. Journal of Alloys and Compounds, 2016, 655:66-70. doi: 10.1016/j.jallcom.2015.06.268 [17] REN X D, RUAN L, HUANGFU Y Zh, et al. Experimental research of laser shock processing 6061-T651 aluminum alloy during elevated temperature[J]. Chinese Journal of Lasers, 2012, 39(3):303010(in Chinese). doi: 10.3788/CJL [18] YILBAS B S, SHUJA S Z, ARIF A. Laser-shock processing of steel[J]. Journal of Materials Processing Technology, 2003, 135(1):6-17. doi: 10.1016/S0924-0136(02)00813-0 [19] HUANG Y, JIANG Y F, JIN H, et al. Propagation of shock wave induced by ring laser and its effect on spalling[J]. Laser Technology, 2013, 37(3):301-305(in Chinese). [20] XU S D, REN X D, ZHOU W F, et al. Research of cell-grain refinement and dislocation strengthening of laser shock processing on GH2036 alloy[J]. Chinese Journal of Lasers, 2016, 43(1):0103001(in Chinese). doi: 10.3788/CJL [21] ZHOU L, LI Y, HE W, et al. Deforming TC6 titanium alloys at ultrahigh strain rates during multiple laser shock peening[J]. Materials Science and Engineering, 2013, A578(8):181-186. [22] WANG M, LIN C, MA C. Mechanism of surface nanocrystallization of Ti-6Al-4V alloy[J]. Chinese Journal of Rare Metals, 2011, 35(5):633-638(in Chinese). [23] FABBRO R, FOURNIER J, BALLARD P, et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2):75-84. [24] KALAINATHAN S, PRABHAKARAN S. Recent development and future perspectives of low energy laser shock peening[J]. Optics & Laser Technology, 2016, 81:137-144. [25] MOSHTAGHIOUN B M, GOMEZ-GARCIA D, DOMINGUEZ-RODRIGUEZ A, et al. Grain size dependence of hardness and fracture toughness in pure near fully-dense boron carbide ceramics[J]. Journal of the European Ceramic Society, 2016, 36(7):1829-1834. doi: 10.1016/j.jeurceramsoc.2016.01.017 [26] LIU X, YUAN F, WEI Y. Grain size effect on the hardness of nanocrystal measured by the nanosize indenter[J]. Applied Surface Science, 2013, 279(15):159-166.