[1] |
ZENG L Y, ZHAO Y Q, HONG Q, et al. Research and development of high temperature titanium alloys at 600℃[J]. Titanium Industry Progress, 2012, 29(5):1-5(in Chinese). |
[2] |
FU Y Y, SONG Q M, HUI S X, et al. Research and application of typical aerospace titanium alloys[J]. Chinese Journal of Rare Metals, 2006, 30(6):850-856(in Chinese). |
[3] |
XU G D, WANG F E. Development and application on high-temperature Ti-based alloys[J]. Chinese Journal of Rare Metals, 2008, 32(6):774-780(in Chinese). |
[4] |
LU K, LU J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment[J]. Materials Science and Engineering, 2004, A375/377(1):38-45. |
[5] |
WEN M, LIU G, GU J F, et al. Dislocation evolution in titanium during surface severe plastic deformation[J]. Applied Surface Science, 2009, 255(12):6097-6102. doi: 10.1016/j.apsusc.2009.01.048 |
[6] |
ZHU K Y, VASSEL A, BRISSET F, et al. Nanostructure formation mechanism of α-titanium using SMAT[J]. Acta Materialia, 2004, 52(14):4101-4110. doi: 10.1016/j.actamat.2004.05.023 |
[7] |
GUO Zh Q, GE L L, YUAN H, et al. Surface nano-crystallization of TC4 titanium alloy and its thermal stability[J]. Transactions of Materials and Heat Treatment, 2012, 33(3):114-118(in Chinese). |
[8] |
DING H, SHIN Y C. Dislocation density-based modeling of subsurface grain refinement with laser-induced shock compression[J]. Computational Materials Science, 2012, 53(1):79-88. |
[9] |
LIU H X, HU Y, WANG X, et al. Grain refinement progress of pure titanium during laser shock forming (LSF) and mechanical property characterizations with nanoindentation[J]. Materials Science and Engineering, 2013, A564(564):13-21. |
[10] |
REN X D, ZHOU W F, LIU F F, et al. Microstructure evolution and grain refinement of Ti-6Al-4V alloy by laser shock processing[J]. Applied Surface Science, 2016, 363:44-49. doi: 10.1016/j.apsusc.2015.11.192 |
[11] |
HU Z R, TONG G Q, CHEN Ch J, et al. Technology of laser nano-material surface engineeering[J]. Laser Technology, 2014, 38(6):764-770(in Chinese). |
[12] |
CHE Z, YANG J, GONG S, et al. Self-nanocrystallization of Ti-6Al-4V alloy surface induced by laser shock processing[J]. Rare Metal Materials and Engineering, 2014, 43(5):1056-1060. doi: 10.1016/S1875-5372(14)60100-4 |
[13] |
ZHANG J W, LUO X M, MA H, et al. Surface nano-crystallization of aero-aluminum alloy 2A02 induced by laser shocking[J]. Heat Treatment of Metals, 2011, 36(9):22-26(in Chinese). |
[14] |
LIU Y G, LI M Q, LIU H J. Surface nanocrystallization and gradient structure developed in the bulk TC4 alloy processed by shot peening[J]. Journal of Alloys and Compounds, 2016, 685:186-193. doi: 10.1016/j.jallcom.2016.05.295 |
[15] |
LOU S, LI Y, ZHOU L, et al. Surface nanocrystallization of metallic alloys with different stacking fault energy induced by laser shock processing[J]. Materials & Design, 2016, 104:320-326. |
[16] |
ZHOU L, HE W, LUO S, et al. Laser shock peening induced surface nanocrystallization and martensite transformation in austenitic stainless steel[J]. Journal of Alloys and Compounds, 2016, 655:66-70. doi: 10.1016/j.jallcom.2015.06.268 |
[17] |
REN X D, RUAN L, HUANGFU Y Zh, et al. Experimental research of laser shock processing 6061-T651 aluminum alloy during elevated temperature[J]. Chinese Journal of Lasers, 2012, 39(3):303010(in Chinese). doi: 10.3788/CJL |
[18] |
YILBAS B S, SHUJA S Z, ARIF A. Laser-shock processing of steel[J]. Journal of Materials Processing Technology, 2003, 135(1):6-17. doi: 10.1016/S0924-0136(02)00813-0 |
[19] |
HUANG Y, JIANG Y F, JIN H, et al. Propagation of shock wave induced by ring laser and its effect on spalling[J]. Laser Technology, 2013, 37(3):301-305(in Chinese). |
[20] |
XU S D, REN X D, ZHOU W F, et al. Research of cell-grain refinement and dislocation strengthening of laser shock processing on GH2036 alloy[J]. Chinese Journal of Lasers, 2016, 43(1):0103001(in Chinese). doi: 10.3788/CJL |
[21] |
ZHOU L, LI Y, HE W, et al. Deforming TC6 titanium alloys at ultrahigh strain rates during multiple laser shock peening[J]. Materials Science and Engineering, 2013, A578(8):181-186. |
[22] |
WANG M, LIN C, MA C. Mechanism of surface nanocrystallization of Ti-6Al-4V alloy[J]. Chinese Journal of Rare Metals, 2011, 35(5):633-638(in Chinese). |
[23] |
FABBRO R, FOURNIER J, BALLARD P, et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2):75-84. |
[24] |
KALAINATHAN S, PRABHAKARAN S. Recent development and future perspectives of low energy laser shock peening[J]. Optics & Laser Technology, 2016, 81:137-144. |
[25] |
MOSHTAGHIOUN B M, GOMEZ-GARCIA D, DOMINGUEZ-RODRIGUEZ A, et al. Grain size dependence of hardness and fracture toughness in pure near fully-dense boron carbide ceramics[J]. Journal of the European Ceramic Society, 2016, 36(7):1829-1834. doi: 10.1016/j.jeurceramsoc.2016.01.017 |
[26] |
LIU X, YUAN F, WEI Y. Grain size effect on the hardness of nanocrystal measured by the nanosize indenter[J]. Applied Surface Science, 2013, 279(15):159-166. |