-
图 1为实验中设计的基于NPR和掺铒环形滤波器的双波长单纵模激光器的结构。掺铒光纤放大器加上驱动电流产生自发辐射的光,使激光器起振,并作为激光器的增益介质,经过一个带增益的环形滤波器,限制激光器的模式,使得双波长振荡处于单纵模状态,偏振控制器用来调整激光谐振腔的偏振态,保偏光纤和隔离器和偏振分束器共同构成在线型周期滤波器,当激光腔内的功率满足一定条件时,便可有多波长输出[14-16],偏振分束的一端作为输出,对激光器进行监测。图 1中虚线框内是激光器结构中的环形滤波器,光纤环的长度约是1.46m,50:50耦合器4个端口的输入输出光强分别用E1, E2, E3和E4来表示,它们之间的关系如下所示[15]:
$ \left[ \begin{array}{l} {E_3}\\ {E_4} \end{array} \right] = \left[ {\begin{array}{*{20}{c}} {\sqrt {1 - \gamma } }&{{\rm{i}}\sqrt \gamma }\\ {{\rm{i}}\sqrt \gamma }&{\sqrt {1 - \gamma } } \end{array}} \right]\left[ \begin{array}{l} {E_1}\\ {E_2} \end{array} \right] $
(1) 式中, γ为耦合因子, E4可以表示为:
$ {E_4} = {\rm{i}}\sqrt \gamma {E_1} + \sqrt {1 - \gamma } {E_2} $
(2) 在光纤环中,E4经过掺铒光纤获得了增益(或者损耗)及时间延迟τ,然后送到E2,E4和E2的关系如下:
$ {E_2} = g{{\rm{e}}^{{\rm{i}}\omega \tau }}{E_4} $
(3) 式中,ω是光强的角频率,g为环路增益。将(2)式代入(3)式得:
$ {E_2} = {\rm{i}}g{{\rm{e}}^{{\rm{i}}\omega \tau }}\sqrt \gamma {E_1}/(1 - g{{\rm{e}}^{{\rm{i}}\omega \tau }}\sqrt {1 - \gamma } ) $
(4) 然后将(4)式代回(1)式中得:
$ {E_3} = \frac{{\sqrt {1 - \gamma } - g{{\rm{e}}^{{\rm{i}}\omega \tau }}}}{{1 - g{{\rm{e}}^{{\rm{i}}\omega \tau }}\sqrt {1 - \gamma } }}{E_1} $
(5) $ {E_4} = {\rm{i}}\sqrt \gamma {E_1}/\left( {1 - g{{\rm{e}}^{{\rm{i}}\omega \tau }}\sqrt {1 - \gamma } } \right) $
(6) 两个谱线间的间隔Δω为:
$ \Delta \omega = \frac{1}{\tau }\arccos \left[ {\frac{{4g\sqrt {1 - \gamma } - 1 - {g^2}\left( {1 - \gamma } \right)}}{{2g\sqrt {1 - \gamma } }}} \right] $
(7) 则相应的传输函数T为:
$ \begin{array}{*{20}{c}} {T = {{\left| {{E_4}} \right|}^2}/{{\left| {{E_1}} \right|}^2} = }\\ {\frac{\gamma }{{1 + {g^2}\left( {1 - \gamma } \right) - 2g\sqrt {1 - \gamma } \cos \left( {\omega \tau } \right)}}} \end{array} $
(8) 自由频谱范围F为:
$ F = 2{\rm{ \mathsf{ π} /}}\tau $
(9) 对环形滤波器进行仿真,其中γ=0.5,g=1.2,F=140MHz, 得到如图 2所示的传输函数。
基于环形滤波器的双波长单频光纤激光器
Dual-wavelength single frequency fiber laser based on ring filter
-
摘要: 为了解决双波长激光器的稳定性问题、达到压窄双波长激光器线宽的目的,采用在激光器结构中加入环形滤波器的方法,抑制了不需要的振荡模式。对滤波器进行了计算和仿真,得到了梳状谱;通过实验得到了线宽为5.7kHz的单纵模双波长激光。经过输出功率稳定性测试,1h内功率波动为0.6dB。结果表明,环形滤波器的作用是十分明显的。Abstract: In order to solve the problem of dual wavelength laser stability and achieve the purpose of narrowing the line width, the unwanted oscillation modes was limited by adding ring filter into the laser structure. After simulation and calculation of filter, the dressing spectrum was obtained. Single frequency dual-wavelength laser with linewidth of 5.7kHz was obtained by experiments. After output power stability test, the power fluctuation within 1h was 0.6dB. The result shows that the effect of ring filter is very obvious.
-
Key words:
- lasers /
- dual-wavelength fiber laser /
- nonlinear polarization rotation /
- fiber filter
-
[1] DAI Zh Y, ZHANG X X, PENG Z Sh, et al. A single-frequency narrow-line width fiber laser with PM fiber saturable absorber[J]. Journal of Optoelectronics·Laser, 2011, 22(5):652-655(in Chinese). [2] DONG F J, YANG X F, TONG Zh R, et al. Dual-wavelength Er-doped fiber laser based on polarization hole burning of multi-mode fiber[J]. Journal of Optoelectronics·Laser, 2011, 22(6):841-844(in Chinese). [3] CAO Y Ch, XIONG J J, HOU Q Zh. Design of precision control systems for tunable semiconductor lasers[J]. Laser Technology, 2015, 39(3):316-319(in Chinese). [4] CHEN W G, LOU S Q, WANG L W, et al. Switchable dual-wavelength erbium-doped fiber laser based on the photonic crystal fiber loop mirror and chirped fiber Bragg gratting[J]. Optoelectronics Lett-ers, 2010, 6(2):94-97. doi: 10.1007/s11801-010-9249-6 [5] JIN L, KAI G Y, XU L L, et al. Switchable dual-wavelength erbium-doped fiber laser with a tilted fiber grating[J]. Optoelectronics Lett-ers, 2007, 3(1):27-29. doi: 10.1007/s11801-007-6114-3 [6] PAN Sh L, YAO J P. A wavelength-switchable single-longitudinalmode dual-wavelength erbium-doped fiber laser for switchable microwave generation[J].Optics Express, 2009, 17(7):5414-5419. doi: 10.1364/OE.17.005414 [7] QUINTELA M A, PEREZ-HERRERA R A, CANALES I, et al. Stabilization of dual-wavelength erbium-doped fiber ring lasers by single-mode operation[J]. IEEE Photonics Technology Letters, 2010, 22(6):368-370. doi: 10.1109/LPT.2009.2039867 [8] PENG P C, TSENG H Y, CHI S. A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry-Perot laser diode[J]. IEEE Photonics Technology Letters, 2003, 15(5):661-663. doi: 10.1109/LPT.2003.809952 [9] YAO Y, CHEN X F, DAI Y T, et al. Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation[J].IEEE Photonics Technology Letters, 2006, 18(1):187-189. doi: 10.1109/LPT.2005.861309 [10] PAN S L, ZHAO X F, LOU C Y. Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier[J]. Optics Letters, 2008, 33(8):764-766. doi: 10.1364/OL.33.000764 [11] RYN H Y, LEE W K, MOON H S, et al. Stable single-frequency fiber ring laser for 25GHz ITU-T grids utilizing saturable absorber filter[J].IEEE Photonics Technology Letters, 2005, 17(9):1824-1826. doi: 10.1109/LPT.2005.851926 [12] ZHANG K, KANG J U. C-band wavelength-swept single-longitudinalmode erbium-doped fiber ring laser[J].Optics Express, 2008, 16(18):14173-14179. doi: 10.1364/OE.16.014173 [13] FANG X L, TONG Zh R, CAO Y, et al. Narrow line width ring cavity fiber laser using F-P fiber ring filter[J]. Infrared and Laser Engineering, 2013, 42(2):329-333(in Chinese). [14] ZHANG Z X, SANG M H, YE Zh Q, et al. Multiwavelength fiber laser based on nonlinear polarization rotation[J]. Acta Optica Sinica, 2008, 28(4):648-652(in Chinese). doi: 10.3788/AOS [15] PAN S L, YAO J P. Frequency-switchable microwave generation based on a dual-wavelength single-longitudinal-mode fiber laser incorporating a high-finesse ring filter[J]. Optics Express, 2009, 17(14):12167-12173. doi: 10.1364/OE.17.012167 [16] LI B, LIU Y, ZENG Sh G, et al. Study on coherent beam combination of fiber laser array[J].Laser Technology, 2015, 39(5):712-716(in Chinese).