[1]
|
SHAO Y, ZHANG Y B, GAO X, et al. Latest research on and applications progress in laser-induced breakdown spectroscopy[J].Spectroscopy and Spectral Analysis, 2013, 13(10):2593-2598(in Chinese) |
[2]
|
RUSSO R E. Laser-ablation[J]. Applied Spectroscopy, 1995, 49(9):A14-A28. doi: 10.1366/0003702953965399 |
[3]
|
CREMERS D A, RADZIEMSKI L J. Handbook of laser-induced breakdown spectroscopy[M]. Chichester, West Sussex, U K:John Wiley & Sons, Ltd, 2013:23-50. |
[4]
|
RADZIEMSK I, CREMERS L D. A brief history of laser-induced breakdown spectroscopy:from the concept of atoms to LIBS 2012[J]. Spectrochimica Acta, 2013, B87(9):3-10. |
[5]
|
CHEN N, LIU Y X, DU Sh Zh, et al. Research progress in application of nanosecond and femtsecond laser-induced breakdown spectroscopy[J]. Laser & Optoelectronics Progress, 2016, 53(5):050003(in Chinese). |
[6]
|
MUSAZZI S, PERINI U. Laser-induced breakdown spectroscopy theory and applications[M].Boca Raton, USA:Springer Series in Optical Sciences, 2014:3-28. |
[7]
|
WAN X, WANG P. Remote quantitative analysis of minerals based on multispectral line-calibrated laser-induced breakdown spectroscopy (LIBS)[J]. Applied Spectroscopy, 2014, 68(10):1132-1136. doi: 10.1366/13-07203 |
[8]
|
MULTARI R A, CREMERS D A, DUPRE J A M, et al. Detection of biological contaminants on foods and food surfaces using laser-induced breakdown spectroscopy (LIBS)[J]. Journal of Agricultural and Food Chemistry, 2013, 61(36):8687-8694. doi: 10.1021/jf4029317 |
[9]
|
CONNORS B A, SOMERS A, DAY D. Application of handheld laser-induced breakdown spectroscopy (LIBS) to geochemical analysis[J]. Applied Spectroscopy, 2016, 70(5):810-815. doi: 10.1177/0003702816638247 |
[10]
|
DACEY G C. Optical masers in science and technology[J]. Science, 1962, 135(3498):71-74. doi: 10.1126/science.135.3498.71 |
[11]
|
BAUDELET M, SMITH B W. The first years of laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(5):624-629. doi: 10.1039/c3ja50027f |
[12]
|
ANON. Lasers boost spectrograph utility[N]. Chemical & Engineering News Archive, 1962, 40(36a):52. |
[13]
|
CREMERS D A, RADZIEMSKI J. Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry[J]. Analytical Chemistry, 1983, 55(8):1252-1256. doi: 10.1021/ac00259a017 |
[14]
|
MAURICE S, CLEGG S M, WIENS R C, et al. ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(4):863-889. doi: 10.1039/C5JA00417A |
[15]
|
HARMON R S, de LUCIA F C, MIZIOLEK A W, et al. Laser-induced breakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis[J].Geochemistry Exploration Environment Analysis, 2005, 5(1):21-28. doi: 10.1144/1467-7873/03-059 |
[16]
|
AMORUSO S, ARMENANTE M, BERARDI V, et al. Absorption and saturation mechanisms in aluminium laser ablated plasmas[J]. Applied Physics, 1997, A65(3):265-271. |
[17]
|
RUSSO R E, MAO X L, BORISOV O V, et al. Influence of wavelength on fractionation in laser ablation ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2000, 15(9):1115-1120. doi: 10.1039/b004243i |
[18]
|
SONG K, LEE Y I, SNEDDON J. Recent developments in instrumentation for laser induced breakdown spectroscopy[J]. Applied Spectroscopy Reviews, 2002, 37(1):89-117. |
[19]
|
FORNARINI L, FANTONI R, COLAO F, et al. Theoretical modeling of laser ablation of quaternary bronze alloys:case studies comparing femtosecond and nanosecond LIBS experimental data[J]. Journal of Physical Chemistry, 2009, A113(52):14364-14374. |
[20]
|
GEERTSEN C, BRIAND A, CHARTIER F, et al. Comparison between infrared and ultraviolet-laser ablation at atmospheric-pressure-implications for solid sampling inductively-coupled plasma spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1994, 9(1):17-22. doi: 10.1039/JA9940900017 |
[21]
|
LI X W, WANG Zh, FU Y T, et al. Wavelength dependence in the analysis of carbon content in coal by nanosecond 266nm and 1064nm laser induced breakdown spectroscopy[J]. Plasma Science & Technology, 2015, 17(8):621-624. |
[22]
|
GRAVEL J F Y, BOUDREAU D. Study by focused shadowgraphy of the effect of laser irradiance on laser-induced plasma formation and ablation rate in various gases[J]. Spectrochimica Acta, 2009, B64(1):56-66. |
[23]
|
WANG X, MOTTO-ROS V, PANCZER G, et al. Mapping of rare earth elements in nuclear waste glass-ceramic using micro laser-induced breakdown spectroscopy[J]. Spectrochimica Acta, 2013, B87:139-146. |
[24]
|
KASEM M A, GONZALEZ J J, RUSSO R E, et al. Effect of the wavelength on laser induced breakdown spectrometric analysis of archaeological bone[J]. Spectrochimica Acta, 2014, B101:26-31. |
[25]
|
NG C W, CHEUNG N H. Detection of sodium and potassium in single human red blood cells by 193nm laser ablative sampling:A feasibility demonstration[J]. Analytical Chemistry, 2000, 72(1):247-250. doi: 10.1021/ac9908795 |
[26]
|
LOEBE K, UHL A, LUCHT H. Microanalysis of tool steel and glass with laser-induced breakdown spectroscopy[J]. Applied Optics, 2003, 42(30):6166-6173. doi: 10.1364/AO.42.006166 |
[27]
|
PALOMAR T M, OUJJA M, GARCIA-HERAS M, et al. Laser induced breakdown spectroscopy for analysis and characterization of degradation pathologies of Roman glasses[J]. Spectrochimica Acta, 2013, B87:114-120. |
[28]
|
HEDWIG R, BUDI W S, ABDULMADJID S N, et al. Film analysis employing subtarget effect using 355nm Nd-YAG laser-induced plasma at low pressure[J]. Spectrochimica Acta, 2006, B61(12):1285-1293. |
[29]
|
BAUDELET M, BOUERI M, YU J, et al. Correlation between early-stage expansion and spectral emission of a nanosecond laser-induced plasma from organic material[J]. Proceddings of the SPIE, 2008, 70050:70050J. |
[30]
|
LIU K, WANG Q Q, ZHAO H, et al. Differentiation of plastic with laser induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 2011, 31(5):1171-1174(in Chinese). |
[31]
|
PARVIN P, SHOURSHEINI S Z, KHALILINEJAD F, et al. Simultaneous fluorescence and breakdown spectroscopy of fresh and aging transformer oil immersed in paper using ArF excimer laser[J]. Optics and Lasers in Engineering, 2012, 50(11):1672-1676. doi: 10.1016/j.optlaseng.2012.03.015 |
[32]
|
LIU X Y, WANG Zh Y, HAO L Q, et al. Application of laser induced breakdown spectroscopy technology in biomedicine field[J]. Laser Technology, 2008, 32(2):134-136(in Chinese). |
[33]
|
GONDAL M A, SHEMIS M A, KHALIL A A I, et al. Laser produced plasma diagnosis of carcinogenic heavy metals in gallstones[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(2):506-514. doi: 10.1039/C5JA00358J |
[34]
|
KHALIL A A I, GONDAL M A, SHEMIS M, et al. Detection of carcinogenic metals in kidney stones using ultraviolet laser-induced breakdown spectroscopy[J]. Applied Optics, 2015, 54(8):2123-2131. doi: 10.1364/AO.54.002123 |
[35]
|
BONTA M, GONZALEZ J J, QUARLES C D, et al. Elemental mapping of biological samples by the combined use of LIBS and LA-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(1):252-258. doi: 10.1039/C5JA00287G |
[36]
|
BAUDELET M, BOUERI M, YU J, et al. Laser ablation of organic materials for discrimination of bacteria in an inorganic background[J]. Proceedings of the SPIE, 2009, 7214:2271-2282. |
[37]
|
BELL C R, BARNETT C, PILLAI S, et al. Detection of salmonella from food using uv-laser induced breakdown spectroscopy[J]. Biophysical Journal, 2011, 100(3):488a. |
[38]
|
MEHDER A O, GONDAL M A, DASTAGEER M A, et al. Direct spectral analysis and determination of high content of carcinogenic bromine in bread using UV pulsed laser induced breakdown spectroscopy[J]. Journal of Environmental Science and Health, 2016, B51(6):358-365. |
[39]
|
ZHANG D C, MA X W, WEN W Q, et al. Influence of laser wavelength on laser-induced breakdown spectroscopy applied to semi-quantitative analysis of trace-elements in a plant sample[J]. Chinese Physics Letters, 2010, 27(6):063202. doi: 10.1088/0256-307X/27/6/063202 |
[40]
|
GONDAL M A, BAIG U, DASTAGEER M A, et al. Determination of elemental composition of coffee using uv-pulsed laser induced breakdown spectroscopy[C]//Proceedings of the Fifth Saudi International Meeting on Frontiers of Physics(SIMFP2016). New York, USA: AIP Publishing, 2016: 030007. |
[41]
|
MEHDER A O, HABIBULLAH Y B, GONDAL M A, et al. Qualitative and quantitative spectro-chemical analysis of dates using UV-pulsed laser induced breakdown spectroscopy and inductively coupled plasma mass spectrometry[J]. Talanta, 2016, 155:124-132. doi: 10.1016/j.talanta.2016.04.036 |
[42]
|
GONDAL M A, HABIBULLAH Y B, BAIG U, et al. Direct spectral analysis of tea samples using 266nm UV pulsed laser-induced breakdown spectroscopy and cross validation of LIBS results with ICP-MS[J]. Talanta, 2016, 152:341-352. doi: 10.1016/j.talanta.2016.02.030 |
[43]
|
ROBERT P, FABRE C, DUBESSY J, et al. Optimization of micro-laser induced breakdown spectroscopy analysis and signal processing[J]. Spectrochimica Acta, 2008, B63(10):1109-1116. |
[44]
|
CHEN Z J, GODWAL Y, TSUI Y Y, et al. Sensitive detection of metals in water using laser-induced breakdown spectroscopy on wood sample substrates[J]. Applied Optics, 2010, 49(13):C87-C94. doi: 10.1364/AO.49.000C87 |
[45]
|
MATEO M P, NICOLASA G, YANE Z. Characterization of inorganic species in coal by laser-induced breakdown spectroscopy using UV and IR radiations[J]. Applied Surface Science, 2007, 254(4):868-872. doi: 10.1016/j.apsusc.2007.08.043 |
[46]
|
POPOV A M, KOZHNOV M O, ZAYTSEV S M, et al. Enhanced sensitivity of direct beryllium determination in soil by laser-induced breakdown spectrometry[J]. Journal of Applied Spectroscopy, 2015, 82(5):739-743. doi: 10.1007/s10812-015-0173-1 |
[47]
|
LI X W, MAO X L, WANG Z, et al. Quantitative analysis of carbon content in bituminous coal by laser-induced breakdown spectroscopy using UV laser radiation[J]. Plasma Science & Technology, 2015, 17(11):928-932. |