[1] SHAO Y, ZHANG Y B, GAO X, et al. Latest research on and applications progress in laser-induced breakdown spectroscopy[J].Spectroscopy and Spectral Analysis, 2013, 13(10):2593-2598(in Chinese)
[2] RUSSO R E. Laser-ablation[J]. Applied Spectroscopy, 1995, 49(9):A14-A28. doi: 10.1366/0003702953965399
[3] CREMERS D A, RADZIEMSKI L J. Handbook of laser-induced breakdown spectroscopy[M]. Chichester, West Sussex, U K:John Wiley & Sons, Ltd, 2013:23-50.
[4] RADZIEMSK I, CREMERS L D. A brief history of laser-induced breakdown spectroscopy:from the concept of atoms to LIBS 2012[J]. Spectrochimica Acta, 2013, B87(9):3-10.
[5] CHEN N, LIU Y X, DU Sh Zh, et al. Research progress in application of nanosecond and femtsecond laser-induced breakdown spectroscopy[J]. Laser & Optoelectronics Progress, 2016, 53(5):050003(in Chinese).
[6] MUSAZZI S, PERINI U. Laser-induced breakdown spectroscopy theory and applications[M].Boca Raton, USA:Springer Series in Optical Sciences, 2014:3-28.
[7] WAN X, WANG P. Remote quantitative analysis of minerals based on multispectral line-calibrated laser-induced breakdown spectroscopy (LIBS)[J]. Applied Spectroscopy, 2014, 68(10):1132-1136. doi: 10.1366/13-07203
[8] MULTARI R A, CREMERS D A, DUPRE J A M, et al. Detection of biological contaminants on foods and food surfaces using laser-induced breakdown spectroscopy (LIBS)[J]. Journal of Agricultural and Food Chemistry, 2013, 61(36):8687-8694. doi: 10.1021/jf4029317
[9] CONNORS B A, SOMERS A, DAY D. Application of handheld laser-induced breakdown spectroscopy (LIBS) to geochemical analysis[J]. Applied Spectroscopy, 2016, 70(5):810-815. doi: 10.1177/0003702816638247
[10] DACEY G C. Optical masers in science and technology[J]. Science, 1962, 135(3498):71-74. doi: 10.1126/science.135.3498.71
[11] BAUDELET M, SMITH B W. The first years of laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(5):624-629. doi: 10.1039/c3ja50027f
[12] ANON. Lasers boost spectrograph utility[N]. Chemical & Engineering News Archive, 1962, 40(36a):52.
[13] CREMERS D A, RADZIEMSKI J. Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry[J]. Analytical Chemistry, 1983, 55(8):1252-1256. doi: 10.1021/ac00259a017
[14] MAURICE S, CLEGG S M, WIENS R C, et al. ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(4):863-889. doi: 10.1039/C5JA00417A
[15] HARMON R S, de LUCIA F C, MIZIOLEK A W, et al. Laser-induced breakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis[J].Geochemistry Exploration Environment Analysis, 2005, 5(1):21-28. doi: 10.1144/1467-7873/03-059
[16] AMORUSO S, ARMENANTE M, BERARDI V, et al. Absorption and saturation mechanisms in aluminium laser ablated plasmas[J]. Applied Physics, 1997, A65(3):265-271.
[17] RUSSO R E, MAO X L, BORISOV O V, et al. Influence of wavelength on fractionation in laser ablation ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2000, 15(9):1115-1120. doi: 10.1039/b004243i
[18] SONG K, LEE Y I, SNEDDON J. Recent developments in instrumentation for laser induced breakdown spectroscopy[J]. Applied Spectroscopy Reviews, 2002, 37(1):89-117.
[19] FORNARINI L, FANTONI R, COLAO F, et al. Theoretical modeling of laser ablation of quaternary bronze alloys:case studies comparing femtosecond and nanosecond LIBS experimental data[J]. Journal of Physical Chemistry, 2009, A113(52):14364-14374.
[20] GEERTSEN C, BRIAND A, CHARTIER F, et al. Comparison between infrared and ultraviolet-laser ablation at atmospheric-pressure-implications for solid sampling inductively-coupled plasma spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1994, 9(1):17-22. doi: 10.1039/JA9940900017
[21] LI X W, WANG Zh, FU Y T, et al. Wavelength dependence in the analysis of carbon content in coal by nanosecond 266nm and 1064nm laser induced breakdown spectroscopy[J]. Plasma Science & Technology, 2015, 17(8):621-624.
[22] GRAVEL J F Y, BOUDREAU D. Study by focused shadowgraphy of the effect of laser irradiance on laser-induced plasma formation and ablation rate in various gases[J]. Spectrochimica Acta, 2009, B64(1):56-66.
[23] WANG X, MOTTO-ROS V, PANCZER G, et al. Mapping of rare earth elements in nuclear waste glass-ceramic using micro laser-induced breakdown spectroscopy[J]. Spectrochimica Acta, 2013, B87:139-146.
[24] KASEM M A, GONZALEZ J J, RUSSO R E, et al. Effect of the wavelength on laser induced breakdown spectrometric analysis of archaeological bone[J]. Spectrochimica Acta, 2014, B101:26-31.
[25] NG C W, CHEUNG N H. Detection of sodium and potassium in single human red blood cells by 193nm laser ablative sampling:A feasibility demonstration[J]. Analytical Chemistry, 2000, 72(1):247-250. doi: 10.1021/ac9908795
[26] LOEBE K, UHL A, LUCHT H. Microanalysis of tool steel and glass with laser-induced breakdown spectroscopy[J]. Applied Optics, 2003, 42(30):6166-6173. doi: 10.1364/AO.42.006166
[27] PALOMAR T M, OUJJA M, GARCIA-HERAS M, et al. Laser induced breakdown spectroscopy for analysis and characterization of degradation pathologies of Roman glasses[J]. Spectrochimica Acta, 2013, B87:114-120.
[28] HEDWIG R, BUDI W S, ABDULMADJID S N, et al. Film analysis employing subtarget effect using 355nm Nd-YAG laser-induced plasma at low pressure[J]. Spectrochimica Acta, 2006, B61(12):1285-1293.
[29] BAUDELET M, BOUERI M, YU J, et al. Correlation between early-stage expansion and spectral emission of a nanosecond laser-induced plasma from organic material[J]. Proceddings of the SPIE, 2008, 70050:70050J.
[30] LIU K, WANG Q Q, ZHAO H, et al. Differentiation of plastic with laser induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 2011, 31(5):1171-1174(in Chinese).
[31] PARVIN P, SHOURSHEINI S Z, KHALILINEJAD F, et al. Simultaneous fluorescence and breakdown spectroscopy of fresh and aging transformer oil immersed in paper using ArF excimer laser[J]. Optics and Lasers in Engineering, 2012, 50(11):1672-1676. doi: 10.1016/j.optlaseng.2012.03.015
[32] LIU X Y, WANG Zh Y, HAO L Q, et al. Application of laser induced breakdown spectroscopy technology in biomedicine field[J]. Laser Technology, 2008, 32(2):134-136(in Chinese).
[33] GONDAL M A, SHEMIS M A, KHALIL A A I, et al. Laser produced plasma diagnosis of carcinogenic heavy metals in gallstones[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(2):506-514. doi: 10.1039/C5JA00358J
[34] KHALIL A A I, GONDAL M A, SHEMIS M, et al. Detection of carcinogenic metals in kidney stones using ultraviolet laser-induced breakdown spectroscopy[J]. Applied Optics, 2015, 54(8):2123-2131. doi: 10.1364/AO.54.002123
[35] BONTA M, GONZALEZ J J, QUARLES C D, et al. Elemental mapping of biological samples by the combined use of LIBS and LA-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(1):252-258. doi: 10.1039/C5JA00287G
[36] BAUDELET M, BOUERI M, YU J, et al. Laser ablation of organic materials for discrimination of bacteria in an inorganic background[J]. Proceedings of the SPIE, 2009, 7214:2271-2282.
[37] BELL C R, BARNETT C, PILLAI S, et al. Detection of salmonella from food using uv-laser induced breakdown spectroscopy[J]. Biophysical Journal, 2011, 100(3):488a.
[38] MEHDER A O, GONDAL M A, DASTAGEER M A, et al. Direct spectral analysis and determination of high content of carcinogenic bromine in bread using UV pulsed laser induced breakdown spectroscopy[J]. Journal of Environmental Science and Health, 2016, B51(6):358-365.
[39] ZHANG D C, MA X W, WEN W Q, et al. Influence of laser wavelength on laser-induced breakdown spectroscopy applied to semi-quantitative analysis of trace-elements in a plant sample[J]. Chinese Physics Letters, 2010, 27(6):063202. doi: 10.1088/0256-307X/27/6/063202
[40] GONDAL M A, BAIG U, DASTAGEER M A, et al. Determination of elemental composition of coffee using uv-pulsed laser induced breakdown spectroscopy[C]//Proceedings of the Fifth Saudi International Meeting on Frontiers of Physics(SIMFP2016). New York, USA: AIP Publishing, 2016: 030007.
[41] MEHDER A O, HABIBULLAH Y B, GONDAL M A, et al. Qualitative and quantitative spectro-chemical analysis of dates using UV-pulsed laser induced breakdown spectroscopy and inductively coupled plasma mass spectrometry[J]. Talanta, 2016, 155:124-132. doi: 10.1016/j.talanta.2016.04.036
[42] GONDAL M A, HABIBULLAH Y B, BAIG U, et al. Direct spectral analysis of tea samples using 266nm UV pulsed laser-induced breakdown spectroscopy and cross validation of LIBS results with ICP-MS[J]. Talanta, 2016, 152:341-352. doi: 10.1016/j.talanta.2016.02.030
[43] ROBERT P, FABRE C, DUBESSY J, et al. Optimization of micro-laser induced breakdown spectroscopy analysis and signal processing[J]. Spectrochimica Acta, 2008, B63(10):1109-1116.
[44] CHEN Z J, GODWAL Y, TSUI Y Y, et al. Sensitive detection of metals in water using laser-induced breakdown spectroscopy on wood sample substrates[J]. Applied Optics, 2010, 49(13):C87-C94. doi: 10.1364/AO.49.000C87
[45] MATEO M P, NICOLASA G, YANE Z. Characterization of inorganic species in coal by laser-induced breakdown spectroscopy using UV and IR radiations[J]. Applied Surface Science, 2007, 254(4):868-872. doi: 10.1016/j.apsusc.2007.08.043
[46] POPOV A M, KOZHNOV M O, ZAYTSEV S M, et al. Enhanced sensitivity of direct beryllium determination in soil by laser-induced breakdown spectrometry[J]. Journal of Applied Spectroscopy, 2015, 82(5):739-743. doi: 10.1007/s10812-015-0173-1
[47] LI X W, MAO X L, WANG Z, et al. Quantitative analysis of carbon content in bituminous coal by laser-induced breakdown spectroscopy using UV laser radiation[J]. Plasma Science & Technology, 2015, 17(11):928-932.