高级检索

PCFT光束阵列在海洋湍流中的传输特性

胥克涛, 袁扬胜, 冯霞, 屈军

胥克涛, 袁扬胜, 冯霞, 屈军. PCFT光束阵列在海洋湍流中的传输特性[J]. 激光技术, 2015, 39(6): 877-884. DOI: 10.7510/jgjs.issn.1001-3806.2015.06.031
引用本文: 胥克涛, 袁扬胜, 冯霞, 屈军. PCFT光束阵列在海洋湍流中的传输特性[J]. 激光技术, 2015, 39(6): 877-884. DOI: 10.7510/jgjs.issn.1001-3806.2015.06.031
XU Ketao, YUAN Yangsheng, FENG Xia, QU Jun. Propagation properties of partially coherent flat-topped beam array in oceanic turbulence[J]. LASER TECHNOLOGY, 2015, 39(6): 877-884. DOI: 10.7510/jgjs.issn.1001-3806.2015.06.031
Citation: XU Ketao, YUAN Yangsheng, FENG Xia, QU Jun. Propagation properties of partially coherent flat-topped beam array in oceanic turbulence[J]. LASER TECHNOLOGY, 2015, 39(6): 877-884. DOI: 10.7510/jgjs.issn.1001-3806.2015.06.031

PCFT光束阵列在海洋湍流中的传输特性

基金项目: 

国家自然科学基金资助项目(11374015);安徽省自然科学基金资助项目(1408085QF112)

详细信息
    作者简介:

    胥克涛(1988-),男,硕士研究生,主要从事激光大气传输特性的研究.

    通讯作者:

    屈军.E-mail:qujun70@mail.ahnu.edu.cn

  • 中图分类号: O436

Propagation properties of partially coherent flat-topped beam array in oceanic turbulence

  • 摘要: 为了研究部分相干平顶光束阵列在海洋湍流中的传输特性,基于拓展惠更斯-菲涅耳原理和魏格纳分布函数,结合海洋湍流的空间功率谱函数,理论推导了部分相干平顶光束阵列在海洋湍流中的传输因子、有效曲率半径、瑞利尺寸的解析表达式,数值计算并讨论了它们与光束的相干长度、海水温度与盐度变化、动能耗散率、温度方差耗散率等参量的关系.结果表明,在相同条件下,当传输距离超过400m时,相对于部分相干高斯光束、部分相干平顶光束和部分相干高斯光束阵列,部分相干平顶光束阵列受海洋湍流的影响更小,传输特性更为稳定.此结果对选择合适的光束在海洋湍流传输方面具有一定的参考价值.
    Abstract: In order to study propagation properties of partially coherent flat-topped beam array(PCFT) in the oceanic turbulence, based on the extended Huygens-Fresnel principle and Wigner distribution function, combined with the spatial power spectrum of oceanic turbulence, analytical formulas of M2 factor,effective radius of curvature and Rayleigh range of PCFT beam array in oceanic turbulence were obtained and the relationship between M2 factor,effective radius of curvature and Rayleigh range of PCFT beam array in oceanic turbulence and the coherent width, temperature change, salinity change, dissipation rate of turbulent kinetic energy, dissipation rate of mean-squared temperature were analyzed and discussed. The results show that, under the same condition, when the propagation distance is more than 400m, compared with the partially coherent Gaussian beam, the partially coherent flat-topped beam and the partially coherent Gaussian beam array, PCFT beam array is less affected by the oceanic turbulence and the propagation characteristic is more stable. The results have certain reference value for selecting the suitable beams propagating in oceanic turbulence.
  • [1]

    EYYUBOGLU H T. Propagation and coherence properties of higher order partially coherent dark hollow beams in turbulence[J]. Optics Laser Technology, 2008, 40(1): 156-166.

    [2]

    ZHU Z W, XU J C, CANG J. Propagation properties of J0-correlated partially coherent flt-topped beams in a turbulent atmosphere[J]. Laser Technology, 2010, 34(4): 565-568 (in Chinese).

    [3]

    RODRIGO J N M, JULIO C G V. Rytov theory for Helmholtz-Gauss beams in turbulent atmosphere [J]. Optics Express, 2007, 15(25): 16328-16341.

    [4]

    FEI J C, CUI Z F, WANG J S, et al. Propagation characteristics of elegant Laguerre-Gaussian beam passing through a circular aperture in turbulent atmosphere[J]. Laser Technology, 2011, 35(6): 849-853 (in Chinese).

    [5]

    CHU X. The relay propagation of partially coherent cosh-Gaussian-Schell beams in turbulent atmosphere[J]. Applied Physics, 2010,B98(2/3): 573-579.

    [6]

    ZHOU P, MA Y, WANG X, et al. Average spreading of a Gaussian beam array in non-Kolmogorov turbulence[J]. Optics Letters, 2010, 35(7): 1043-1045.

    [7]

    WANG B, FEI J Ch, CUI Zh F, et al. Research of degree of polarization of PCELG beam propagating through a circular aperture[J]. Laser Technology, 2013, 37(5): 672-678 (in Chinese).

    [8]

    CHEN Z, LI C, DING P, et al. Experimental investigation on the scintillation index of vortex beams propagating in simulated atmospheric turbulence[J]. Applied Physics, 2012, B107(2): 469-472.

    [9]

    ALAYINEJAD M, GHAFARY B, KASHANI F D. Analysis of the propagation of flat-topped beam with various beam orders through turbulent atmosphere[J]. Optics and Lasers in Engineering, 2008, 46(1):1-5.

    [10]

    ZHANG R, WANG X Z, CHENG X. Far-zone polarization distribution properties of partially coherent beams with non-uniform source polarization distributions in turbulent atmosphere[J]. Optics Express, 2012, 20(2): 1421-1435.

    [11]

    ZHAO T J, PU Z C. Effects of the aperture on the on-axis polarization properties of partially coherent light[J]. Laser Technology, 2008, 32(4): 424-433 (in Chinese).

    [12]

    JI X L, SHAO X L. Influence of turbulence on the propagation factor of Gaussian Schell-model array beams. Optics Communications, 2010, 283(6): 869-873.

    [13]

    WU J. Propagation of a Gaussian-Schell beam through turbulent media[J]. Journal of Modern Optics, 1990, 37(4): 671-684.

    [14]

    PAN L Zh. Far-field behavior of partially polarized Gaussian Schell-model beams diffracted through an aperture[J]. Acta Optica Sinica, 2006, 26(8): 1250-1255 (in Chinese).

    [15]

    WANG F, CAI Y J, KOROTKOVA O. Partially coherent standard and elegant Laguerre-Gaussian beams of all orders[J]. Optics Express, 2009, 17(25): 22366.

    [16]

    ZHONG Y L, CUI Z F, SHI J P, et al. Propagation properties of partially coherent flat-topped beam array in a turbulent atmosphere [J]. Laser Technology, 2010, 34(4): 542-547(in Chinese).

    [17]

    WU J, BOARDMAN A D. Coherence length of a Gaussian-Schell beam in atmospheric turbulence[J]. Journal of Modern Optics, 1991, 38(7): 1355-1363.

    [18]

    WANG F, CAI Y J. Second-order statistics of a twisted Gaussian Schell-model beam in turbulent atmosphere[J]. Optics Express, 2010, 18(24): 24661-24672.

    [19]

    L B D, LUO Sh R. Beam propagation factor of aperture super-Gaussian beams[J]. Optik, 2001, 112(11): 503-506.

    [20]

    L B D, MA H. A comparative study of elegant and standard Hermite-Gaussian beams[J].Optics Communications, 2000, 174(1): 99-104.

    [21]

    ZHOU P, MA Y, WANG X, et al. Average spreading of a Gaussian beam array in non-Kolmogorov turbulence[J]. Optics Letters, 2012,35(7): 1043-1045.

    [22]

    ZHOU P, LIU Z, XU X, et al. Propagation of coherently combined flattened laser beam array in turbulent atmosphere.Optics Laser Technology, 2009, 41(4): 403-407.

    [23]

    ZHOU P, LIU Z, XU X, et al . Propagation of phase-locked partially coherent flattened beam array in turbulent atmosphere[J]. Optics and Lasers in Engineering, 2009, 47(1): 1254-1258.

    [24]

    EYYUBOGLU H T, BAYKAL Y, CAI Y J. Scintillations of laser array beams[J]. Applied Physics, 2008, B91(2): 265-271.

    [25]

    CAI Y J, HE S. Propagation of various dark hollow beams in a turbulent atmosphere[J]. Optics Express, 2006, 14(4): 1353-1367.

    [26]

    WANG H T, LIU D, ZHOU Z. The propagation of radially polarized partially coherent beam through an optical system in turbulent atmosphere[J]. Applied Physics, 2010,B101(12): 361-369.

    [27]

    JI X L, CHEN X W, L B D.Spreading and directionality of partially coherent Hermite-Gaussian beams propagating through atmosphere turbulence[J]. Journal of the Optics Society of America, 2008, A25(1): 21-28.

    [28]

    KOROTKOVA O, FARWELL N. Effect of oceanic turbulence on polarization of stochastic beams[J]. Optics Communication, 2011, 287(7): 1740-1746.

    [29]

    HANSON F, LASHER M. Effects of underwater turbulence on laser beam propagation and coupling into single-mode optical fiber[J]. Applied Optics, 2010, 49(16): 3224-3230.

    [30]

    TANG M M, ZHAO D M. Propagation of radially polarized beams in the oceanic turbulence[J]. Applied Physics, 2013, B111(4): 665-670.

    [31]

    ZHOU Y, CHEN Q , ZHAO D M. Propagation of astigmatic stochastic electromagnetic beams in oceanic turbulence[J]. Applied Physics, 2013, B114(4): 475-482.

    [32]

    ZHOU Y, HUANG K, ZHAO D M. Changes in the statistical properties of stochastic anisotropic electromagnetic beams propagating through the oceanic turbulence[J]. Applied Physics, 2012,B109(2): 289-294.

    [33]

    TANG M M, ZHAO D M. Spectral changes in stochastic anisotropic electromagnetic beams propagating through turbulent ocean[J]. Optics Communications, 2014, 312(3) : 89-93.

    [34]

    MANDEL L, WOLF E. Optical coherence and quantum optics[M]. Cambridge,UK: Cambridge University Press, 1995: 100-125.

    [35]

    DAN Y Q, ZHANG B. Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere[J]. Optics Express, 2008, 16(20): 15563-15575.

    [36]

    FARWELL N, KOROTKOVA O. Intensity and coherence properties of light in oceanic turbulence[J]. Optics Communication, 2012, 285(6): 872-875.

    [37]

    LU W, LIU L R, SUN J F. Influence of temperature and salinity fluctuations on propagation behaviour of partially coherence in oceanic turbulence[J]. Journal of Optics,2006, A8(12): 1052-1058.

    [38]

    JI X L, EYYUBOGLU H T, BAYKAL Y. Influence of turbulence on the effective radius of curvature of radial Gaussian array beams[J]. Optics Express, 2010, 18(7): 6922-6928.

    [39]

    EYYUBOGLU H T, BAYKAL Y, JI X L. Radius of curvature variations for annular, dark hollow and flat topped beams in turbulence[J]. Applied Physics, 2010,B99(4): 801-807.

    [40]

    GBUR G, WOLF E. The Rayleigh range of Gaussian Schell-model beams[J]. Journal of Modern Optics, 2010, 48(11): 1735-1741.

  • 期刊类型引用(3)

    1. 张艳红,卢腾飞,刘永欣,陈子阳,孙顺红. 非均匀偏振光束在海洋湍流中的光强特性. 激光技术. 2020(03): 310-314 . 本站查看
    2. 周正兰,袁扬胜,束杰,徐翔,屈军. 部分相干月牙形光束在非Kolmogorov谱中的漂移. 激光技术. 2019(04): 143-148 . 本站查看
    3. 包训旺,袁扬胜,崔执凤,屈军. 受遮挡贝塞尔-高斯光束在湍流大气传输的M~2因子. 激光技术. 2018(03): 427-432 . 本站查看

    其他类型引用(2)

计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  5
  • 被引次数: 5
出版历程
  • 收稿日期:  2014-08-19
  • 修回日期:  2014-10-15
  • 发布日期:  2015-11-24

目录

    /

    返回文章
    返回