高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PCFT光束阵列在海洋湍流中的传输特性

胥克涛 袁扬胜 冯霞 屈军

引用本文:
Citation:

PCFT光束阵列在海洋湍流中的传输特性

    作者简介: 胥克涛(1988-),男,硕士研究生,主要从事激光大气传输特性的研究..
    通讯作者: 屈军, qujun70@mail.ahnu.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(11374015);安徽省自然科学基金资助项目(1408085QF112)

  • 中图分类号: O436

Propagation properties of partially coherent flat-topped beam array in oceanic turbulence

    Corresponding author: QU Jun, qujun70@mail.ahnu.edu.cn
  • CLC number: O436

  • 摘要: 为了研究部分相干平顶光束阵列在海洋湍流中的传输特性,基于拓展惠更斯-菲涅耳原理和魏格纳分布函数,结合海洋湍流的空间功率谱函数,理论推导了部分相干平顶光束阵列在海洋湍流中的传输因子、有效曲率半径、瑞利尺寸的解析表达式,数值计算并讨论了它们与光束的相干长度、海水温度与盐度变化、动能耗散率、温度方差耗散率等参量的关系.结果表明,在相同条件下,当传输距离超过400m时,相对于部分相干高斯光束、部分相干平顶光束和部分相干高斯光束阵列,部分相干平顶光束阵列受海洋湍流的影响更小,传输特性更为稳定.此结果对选择合适的光束在海洋湍流传输方面具有一定的参考价值.
  • [1]

    EYYUBOGLU H T. Propagation and coherence properties of higher order partially coherent dark hollow beams in turbulence[J]. Optics Laser Technology, 2008, 40(1): 156-166.
    [2]

    ZHU Z W, XU J C, CANG J. Propagation properties of J0-correlated partially coherent flt-topped beams in a turbulent atmosphere[J]. Laser Technology, 2010, 34(4): 565-568 (in Chinese).
    [3]

    RODRIGO J N M, JULIO C G V. Rytov theory for Helmholtz-Gauss beams in turbulent atmosphere [J]. Optics Express, 2007, 15(25): 16328-16341.
    [4]

    FEI J C, CUI Z F, WANG J S, et al. Propagation characteristics of elegant Laguerre-Gaussian beam passing through a circular aperture in turbulent atmosphere[J]. Laser Technology, 2011, 35(6): 849-853 (in Chinese).
    [5]

    CHU X. The relay propagation of partially coherent cosh-Gaussian-Schell beams in turbulent atmosphere[J]. Applied Physics, 2010,B98(2/3): 573-579.
    [6]

    ZHOU P, MA Y, WANG X, et al. Average spreading of a Gaussian beam array in non-Kolmogorov turbulence[J]. Optics Letters, 2010, 35(7): 1043-1045.
    [7]

    WANG B, FEI J Ch, CUI Zh F, et al. Research of degree of polarization of PCELG beam propagating through a circular aperture[J]. Laser Technology, 2013, 37(5): 672-678 (in Chinese).
    [8]

    CHEN Z, LI C, DING P, et al. Experimental investigation on the scintillation index of vortex beams propagating in simulated atmospheric turbulence[J]. Applied Physics, 2012, B107(2): 469-472.
    [9]

    ALAYINEJAD M, GHAFARY B, KASHANI F D. Analysis of the propagation of flat-topped beam with various beam orders through turbulent atmosphere[J]. Optics and Lasers in Engineering, 2008, 46(1):1-5.
    [10]

    ZHANG R, WANG X Z, CHENG X. Far-zone polarization distribution properties of partially coherent beams with non-uniform source polarization distributions in turbulent atmosphere[J]. Optics Express, 2012, 20(2): 1421-1435.
    [11]

    ZHAO T J, PU Z C. Effects of the aperture on the on-axis polarization properties of partially coherent light[J]. Laser Technology, 2008, 32(4): 424-433 (in Chinese).
    [12]

    JI X L, SHAO X L. Influence of turbulence on the propagation factor of Gaussian Schell-model array beams. Optics Communications, 2010, 283(6): 869-873.
    [13]

    WU J. Propagation of a Gaussian-Schell beam through turbulent media[J]. Journal of Modern Optics, 1990, 37(4): 671-684.
    [14]

    PAN L Zh. Far-field behavior of partially polarized Gaussian Schell-model beams diffracted through an aperture[J]. Acta Optica Sinica, 2006, 26(8): 1250-1255 (in Chinese).
    [15]

    WANG F, CAI Y J, KOROTKOVA O. Partially coherent standard and elegant Laguerre-Gaussian beams of all orders[J]. Optics Express, 2009, 17(25): 22366.
    [16]

    ZHONG Y L, CUI Z F, SHI J P, et al. Propagation properties of partially coherent flat-topped beam array in a turbulent atmosphere [J]. Laser Technology, 2010, 34(4): 542-547(in Chinese).
    [17]

    WU J, BOARDMAN A D. Coherence length of a Gaussian-Schell beam in atmospheric turbulence[J]. Journal of Modern Optics, 1991, 38(7): 1355-1363.
    [18]

    WANG F, CAI Y J. Second-order statistics of a twisted Gaussian Schell-model beam in turbulent atmosphere[J]. Optics Express, 2010, 18(24): 24661-24672.
    [19]

    L B D, LUO Sh R. Beam propagation factor of aperture super-Gaussian beams[J]. Optik, 2001, 112(11): 503-506.
    [20]

    L B D, MA H. A comparative study of elegant and standard Hermite-Gaussian beams[J].Optics Communications, 2000, 174(1): 99-104.
    [21]

    ZHOU P, MA Y, WANG X, et al. Average spreading of a Gaussian beam array in non-Kolmogorov turbulence[J]. Optics Letters, 2012,35(7): 1043-1045.
    [22]

    ZHOU P, LIU Z, XU X, et al. Propagation of coherently combined flattened laser beam array in turbulent atmosphere.Optics Laser Technology, 2009, 41(4): 403-407.
    [23]

    ZHOU P, LIU Z, XU X, et al . Propagation of phase-locked partially coherent flattened beam array in turbulent atmosphere[J]. Optics and Lasers in Engineering, 2009, 47(1): 1254-1258.
    [24]

    EYYUBOGLU H T, BAYKAL Y, CAI Y J. Scintillations of laser array beams[J]. Applied Physics, 2008, B91(2): 265-271.
    [25]

    CAI Y J, HE S. Propagation of various dark hollow beams in a turbulent atmosphere[J]. Optics Express, 2006, 14(4): 1353-1367.
    [26]

    WANG H T, LIU D, ZHOU Z. The propagation of radially polarized partially coherent beam through an optical system in turbulent atmosphere[J]. Applied Physics, 2010,B101(12): 361-369.
    [27]

    JI X L, CHEN X W, L B D.Spreading and directionality of partially coherent Hermite-Gaussian beams propagating through atmosphere turbulence[J]. Journal of the Optics Society of America, 2008, A25(1): 21-28.
    [28]

    KOROTKOVA O, FARWELL N. Effect of oceanic turbulence on polarization of stochastic beams[J]. Optics Communication, 2011, 287(7): 1740-1746.
    [29]

    HANSON F, LASHER M. Effects of underwater turbulence on laser beam propagation and coupling into single-mode optical fiber[J]. Applied Optics, 2010, 49(16): 3224-3230.
    [30]

    TANG M M, ZHAO D M. Propagation of radially polarized beams in the oceanic turbulence[J]. Applied Physics, 2013, B111(4): 665-670.
    [31]

    ZHOU Y, CHEN Q , ZHAO D M. Propagation of astigmatic stochastic electromagnetic beams in oceanic turbulence[J]. Applied Physics, 2013, B114(4): 475-482.
    [32]

    ZHOU Y, HUANG K, ZHAO D M. Changes in the statistical properties of stochastic anisotropic electromagnetic beams propagating through the oceanic turbulence[J]. Applied Physics, 2012,B109(2): 289-294.
    [33]

    TANG M M, ZHAO D M. Spectral changes in stochastic anisotropic electromagnetic beams propagating through turbulent ocean[J]. Optics Communications, 2014, 312(3) : 89-93.
    [34]

    MANDEL L, WOLF E. Optical coherence and quantum optics[M]. Cambridge,UK: Cambridge University Press, 1995: 100-125.
    [35]

    DAN Y Q, ZHANG B. Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere[J]. Optics Express, 2008, 16(20): 15563-15575.
    [36]

    FARWELL N, KOROTKOVA O. Intensity and coherence properties of light in oceanic turbulence[J]. Optics Communication, 2012, 285(6): 872-875.
    [37]

    LU W, LIU L R, SUN J F. Influence of temperature and salinity fluctuations on propagation behaviour of partially coherence in oceanic turbulence[J]. Journal of Optics,2006, A8(12): 1052-1058.
    [38]

    JI X L, EYYUBOGLU H T, BAYKAL Y. Influence of turbulence on the effective radius of curvature of radial Gaussian array beams[J]. Optics Express, 2010, 18(7): 6922-6928.
    [39]

    EYYUBOGLU H T, BAYKAL Y, JI X L. Radius of curvature variations for annular, dark hollow and flat topped beams in turbulence[J]. Applied Physics, 2010,B99(4): 801-807.
    [40]

    GBUR G, WOLF E. The Rayleigh range of Gaussian Schell-model beams[J]. Journal of Modern Optics, 2010, 48(11): 1735-1741.
  • [1] 李平邝爱华 . 非傍轴部分相干厄米-余弦-高斯光束传输特性. 激光技术, 2014, 38(1): 141-144. doi: 10.7510/jgjs.issn.1001-3806.2014.01.031
    [2] 张艳红卢腾飞刘永欣陈子阳孙顺红 . 非均匀偏振光束在海洋湍流中的光强特性. 激光技术, 2020, 44(3): 310-314. doi: 10.7510/jgjs.issn.1001-3806.2020.03.007
    [3] 雷子昂杨颂沈振民孙倩张景豪郑永超 . 海洋激光雷达漫射衰减系数反演方法研究. 激光技术, 2024, 48(3): 425-431. doi: 10.7510/jgjs.issn.1001-3806.2024.03.019
    [4] . 高斯激光束的有效菲涅耳数与焦移. 激光技术, 1983, 7(5): 35-42.
    [5] 仓吉齐文辉张逸新 . 斜程大气传输部分相干平顶光束的空间相干度. 激光技术, 2009, 33(5): 518-521. doi: 10.3969/j.issn.1001-3806.2009.05.029
    [6] 文侨张彬 . 部分相干平顶光束的M2因子、模分解及合成. 激光技术, 2005, 29(1): 68-71.
    [7] 钟燕丽崔执凤石建平屈军 . 部分相干平顶光束序列在湍流大气中传输特性. 激光技术, 2010, 34(4): 542-547. doi: 10.3969/j.issn.1001-3806.2010.04.030
    [8] 朱焯炜徐建才仓吉 . 湍流大气中J0相关部分相干平顶光束的传输特性. 激光技术, 2010, 34(4): 565-568. doi: 10.3969/j.issn.1001-3806.2010.04.035
    [9] 吴运梅王莉王喜庆 . 部分相干修正贝塞尔-高斯光束通过光阑的传输. 激光技术, 2007, 31(6): 649-652.
    [10] 杨军王慧章曦 . 大气湍流对部分相干激光瑞利区间影响的研究. 激光技术, 2016, 40(3): 456-460. doi: 10.7510/jgjs.issn.1001-3806.2016.03.033
    [11] 邓晓鹏邹凯 . 点源照射的单随机相位菲涅耳域光学图像加密. 激光技术, 2006, 30(3): 327-328,331.
    [12] 肖永亮刘强袁胜周昕赵晓军杨泽后陈涌周鼎富 . 基于菲涅耳域光学图像加密系统的解密研究. 激光技术, 2009, 33(4): 433-436. doi: 10.3969/j.issn.1001-3806.2009.04.029
    [13] 巩马理 . 激光光束传输特性分析─—等效波面曲率半径法. 激光技术, 1994, 18(5): 293-296.
    [14] 王明灼段开椋吕百达 . 菲涅耳近似对硬边光阑衍射光束的适用性. 激光技术, 2004, 28(6): 670-672.
    [15] 常山毛杰健杨建荣 . 高斯光束微圆孔菲涅耳衍射的束型转变. 激光技术, 2012, 36(4): 568-571. doi: 10.3969/j.issn.1001-806.2012.04.034
    [16] 黄佳钰李天从张良(马余) . 光学多层膜的一种有效设计方法. 激光技术, 1984, 8(3): 36-40.
    [17] 曾庆刚张彬楚晓亮 . 平顶光束通过ABCD光学系统的传输. 激光技术, 2004, 28(2): 144-146.
    [18] 朱焯炜苏宙平 . 湍流大气中J0相关部分相干平顶光束的谱移. 激光技术, 2012, 36(4): 532-535. doi: 10.3969/j.issn.1001-806.2012.04.025
    [19] 牛燕雄汪岳峰刘新张雏朱守深 . 激光束质量因子M2及其测量. 激光技术, 1999, 23(1): 38-41.
    [20] 马晓春董俊良梁芳马宁 . 一种基于菲涅耳原理的光纤盐度测量方法. 激光技术, 2010, 34(3): 313-315. doi: 10.3969/j.issn.1001-3806.2010.03.008
  • 加载中
计量
  • 文章访问数:  5136
  • HTML全文浏览量:  1697
  • PDF下载量:  414
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-20
  • 录用日期:  2014-10-16
  • 刊出日期:  2015-11-25

PCFT光束阵列在海洋湍流中的传输特性

    通讯作者: 屈军, qujun70@mail.ahnu.edu.cn
    作者简介: 胥克涛(1988-),男,硕士研究生,主要从事激光大气传输特性的研究.
  • 1. 安徽师范大学 物理与电子信息学院, 芜湖 241000
基金项目:  国家自然科学基金资助项目(11374015);安徽省自然科学基金资助项目(1408085QF112)

摘要: 为了研究部分相干平顶光束阵列在海洋湍流中的传输特性,基于拓展惠更斯-菲涅耳原理和魏格纳分布函数,结合海洋湍流的空间功率谱函数,理论推导了部分相干平顶光束阵列在海洋湍流中的传输因子、有效曲率半径、瑞利尺寸的解析表达式,数值计算并讨论了它们与光束的相干长度、海水温度与盐度变化、动能耗散率、温度方差耗散率等参量的关系.结果表明,在相同条件下,当传输距离超过400m时,相对于部分相干高斯光束、部分相干平顶光束和部分相干高斯光束阵列,部分相干平顶光束阵列受海洋湍流的影响更小,传输特性更为稳定.此结果对选择合适的光束在海洋湍流传输方面具有一定的参考价值.

English Abstract

参考文献 (40)

目录

    /

    返回文章
    返回