高级检索

非均匀偏振光束在海洋湍流中的光强特性

张艳红, 卢腾飞, 刘永欣, 陈子阳, 孙顺红

张艳红, 卢腾飞, 刘永欣, 陈子阳, 孙顺红. 非均匀偏振光束在海洋湍流中的光强特性[J]. 激光技术, 2020, 44(3): 310-314. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.007
引用本文: 张艳红, 卢腾飞, 刘永欣, 陈子阳, 孙顺红. 非均匀偏振光束在海洋湍流中的光强特性[J]. 激光技术, 2020, 44(3): 310-314. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.007
ZHANG Yanhong, LU Tengfei, LIU Yongxin, CHEN Ziyang, SUN Shunhong. Intensities of non-uniformly polarized beams in the oceanic turbulence[J]. LASER TECHNOLOGY, 2020, 44(3): 310-314. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.007
Citation: ZHANG Yanhong, LU Tengfei, LIU Yongxin, CHEN Ziyang, SUN Shunhong. Intensities of non-uniformly polarized beams in the oceanic turbulence[J]. LASER TECHNOLOGY, 2020, 44(3): 310-314. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.007

非均匀偏振光束在海洋湍流中的光强特性

基金项目: 

国家自然科学基金资助项目 61505059

福建省中青年教师教育科研资助项目 JAT160917

详细信息
    作者简介:

    张艳红(1979-),女,硕士,讲师,现从事激光传输与变换方面的研究

  • 中图分类号: O436.3

Intensities of non-uniformly polarized beams in the oceanic turbulence

  • 摘要: 为了研究非均匀偏振光束在海洋湍流中的光强特性,采用广义的惠更斯-菲涅耳原理,得到非均匀偏振光束经过海洋湍流传输后的光强分布, 并对非均匀偏振光束在海水中传播的传输特性进行了研究。结果表明,非均匀偏振光束的参量nK越大,其光强分布偏离高斯分布越明显,但随着传输距离的增大,海洋湍流对光束的影响也增大,光强分布又回到高斯分布;随着均方温度耗散率χT或温度与盐度波动的相对强度w的增大,或者单位质量液体中的湍流动能的耗散率ε的减小,非均匀偏振光束的光强分布就会更趋于高斯分布。该研究结果在海洋光通信以及成像方面存在潜在的应用价值。
    Abstract: In order to study the intensity characteristics of non-uniformly polarized beams in ocean turbulence, the intensity distribution of the non-uniformly polarized (NUP) beams propagating in the oceanic turbulence was obtained by using the extended Huygens-Fresnel diffraction integral formula. The intensity characteristics of the non-uniformly polarized beams propagating in the seawater were investigated in great detail. It is found that the larger the parameters n and K of the non-uniformly polarized beam are, the more obvious the intensity distribution deviates from the Gaussian distribution. However, with the increase of the propagation distance in the ocean, the intensity distribution returns to the Gaussian distribution under the influence of the oceanic turbulence. In addition, the results also show that the larger the χT is, or the smaller the ε is, or the larger the w is, the more the intensity distribution tends to be Gaussian distribution. The research results have potential application value in ocean optical communication and imaging.
  • Figure  1.   a—the initial intensity distribution of a non-uniformly polarized beam (w0=1×10-2m, K=4/w02, n=2) b—the corresponding polarization distribution

    Figure  2.   The corresponding polarization distributions of non-uniformly polarized beams with different parameter n (w0=1×10-2m, K=4/w02) a—n=0 b—n=1 c—n=6

    Figure  3.   The corresponding polarization distributions of non-uniformly polarized beams with different parameter K(w0=1×10-2m, n=2) a—K=0 b—K=2/w02 c—K=10/w02

    Figure  6.   Normalized intensity of a non-uniformly polarized beam (w0=1×10-2m, K=4/w02, n=2)propagating in the oceanic turbulence with different oceanic parameters

    Figure  4.   Normalized intensity of non-uniformly polarized beams with different parameter n at several propagation distances passing in the oceanic turbulence

    Figure  5.   Normalized intensity of non-uniformly polarized beams with different parameter K at several propagation distances passing in the oceanic turbulence

  • [1]

    KOROTKOVA O, FARWELL N. Effect of oceanic turbulence on polarization of stochastic beams[J]. Optics Communications, 2011, 284(7): 1740-1746. DOI: 10.1016/j.optcom.2010.12.024

    [2]

    SHCHEPAKINA E, FARWELL N, KOROTKOVA O. Spectral changes in stochastic light beams propagating in turbulent ocean[J]. Applied Physics, 2011, B105(2): 415-420. DOI: 10.1007/s00340-011-4626-9

    [3]

    FU W Y, ZHANG H M. Propagation properties of partially coherent radially polarized doughnut beam in turbulent ocean[J]. Optics Communications, 2013, 304: 11-18. DOI: 10.1016/j.optcom.2013.03.029

    [4]

    FU W Y, ZHANG H M, ZHENG X R. Propagation characteristics of multi-gauss-schell model beams in ocean turbulence[J]. Chinese Journal of Lasers, 2015, 42(s1): 113002(in Chinese). DOI: 10.3788/CJL201542.s113002

    [5]

    TANG M M, ZHAO D M. Propagation of radially polarized beams in the oceanic turbulence[J]. Applied Physics, 2013, B111(4): 665-670. http://www.tandfonline.com/servlet/linkout?suffix=CIT0013&dbid=16&doi=10.1080%2F09500340.2017.1404652&key=10.1007%2Fs00340-013-5394-5

    [6]

    XU J, TANG M M, ZHAO D M. Propagation of electromagnetic non-uniformly correlated beams in the oceanic turbulence[J]. Optics Communications, 2014, 331: 1-5. DOI: 10.1016/j.optcom.2014.05.053

    [7]

    XU J, ZHAO D M. Propagation of a stochastic electromagnetic vortex beam in the oceanic turbulence[J]. Optics & Laser Technology, 2014, 57: 189-193. http://cn.bing.com/academic/profile?id=e3b6d7f7ae57cb73b3393cb4ad2c67ad&encoded=0&v=paper_preview&mkt=zh-cn

    [8]

    LU L, JI X, LI X, et al. Influence of oceanic turbulence on propagation characteristics of Gaussian array beams[J]. Optik, 2014, 125(24):7154-7161. DOI: 10.1016/j.ijleo.2014.07.113

    [9]

    YANG T, JI X L, LI X Q. Propagation characteristics of partially coherent decentred annular beams propagating through oceanic turbulence[J]. Acta Physica Sinica, 2015, 64(20): 204206 (in Chi-nese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201520023

    [10]

    PU H, JI X L, YANG T. Spatial coherence of partially coherent annular beams in ocean turbulence[J]. Acta Optica Sinica, 2015, 35(s1):101002 (in Chinese). DOI: 10.3788/AOS201535.s101002

    [11]

    HUANG Y, HUANG P, WANG F, et al. The influence of oceanic turbulence on the beam quality parameters of partially coherent Hermite-Gaussian linear array beams[J]. Optics Communications, 2015, 336:146-152. DOI: 10.1016/j.optcom.2014.09.055

    [12]

    XU K T, YUAN Y Sh, FENG X, et al. Propagation properties of partially coherent flat-topped beam array in oceanic turbulence[J]. Laser Technology, 2015, 39(6): 877-884(in Chinese). http://cn.bing.com/academic/profile?id=fa7f72a00d0eec03b879bf7e63980eae&encoded=0&v=paper_preview&mkt=zh-cn

    [13]

    JIANG Q Ch, SU Y L, NIE H X, et al. Propagation characteristics of Hermite-Gaussian beam in saturable nonlinear media[J]. Laser Technology, 2018, 42(1): 141-144(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201801028

    [14]

    LIU Y X, CHEN Z Y, PU J X. Propagation of stochastic electromagnetic high-order Bessel-Gaussian beams in the oceanic turbulence[J]. Acta Physica Sinica, 2017, 66(12): 124205(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201712018

    [15]

    LIU D J, WANG Y Ch. Evolution properties of a radial phased-locked partially coherent Lorentz-Gauss array beam in oceanic turbulence[J]. Optics & Laser Technology, 2016, 103: 33-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ae4115dd63239afdfc319d995700e1a6

    [16]

    LIU D J, YIN H M, WANG G Q, et al. Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence[J]. Applied Optics, 2017, 56(31): 8785- 8792. DOI: 10.1364/AO.56.008785

    [17]

    NIU Ch J, LU F, HAN X E. Propagation properties of gaussian array beams transmitted in oceanic turbulence simulated by phase screen method[J]. Acta Optica Sinica, 2018, 36(6): 0601004(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201806004

    [18]

    GORI F, SANTARSIERO M, BORGHI R, et al. Use of the van Cittert-ernike theorem for partially polarized sources[J]. Optics Letters, 2000, 25(17): 1291-1293. DOI: 10.1364/OL.25.001291

    [19]

    PU J X, LU B. Focal shifts in focused nonuniformly polarized beams[J]. Journal of The Optical Society of America, 2001, A18(11): 2760-2766. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=747f5b94dc514c2a33f9942ce928ae00

    [20]

    WANG T, PU J X. Propagation of non-uniformly polarized beams in a turbulent atmosphere[J]. Optics Communications, 2008, 281(14): 3617-3622. DOI: 10.1016/j.optcom.2008.03.081

    [21]

    NIKISHOV V V, NIKISHOV V I. Spectrum of turbulent fluctuations of the sea-water refraction index[J]. International Journal of Fluid Mechanics Research, 2000, 27(1):82-98. DOI: 10.1615/InterJFluidMechRes.v27.i1.70

    [22]

    GORI F, SANTARSIERO M, BORGHI R, et al. The irradiance of partially polarized beams in a scalar treatment[J]. Optics Communications, 1999, 163(4/6): 159-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=690db99b4452d96714b12659364602b1

图(6)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  1
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-13
  • 修回日期:  2019-06-20
  • 发布日期:  2020-05-24

目录

    /

    返回文章
    返回