高级检索

受遮挡贝塞尔-高斯光束在湍流大气传输的M2因子

包训旺, 袁扬胜, 崔执凤, 屈军

包训旺, 袁扬胜, 崔执凤, 屈军. 受遮挡贝塞尔-高斯光束在湍流大气传输的M2因子[J]. 激光技术, 2018, 42(3): 427-432. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.026
引用本文: 包训旺, 袁扬胜, 崔执凤, 屈军. 受遮挡贝塞尔-高斯光束在湍流大气传输的M2因子[J]. 激光技术, 2018, 42(3): 427-432. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.026
BAO Xunwang, YUAN Yangsheng, CUI Zhifeng, QU Jun. M2 factor of disturbed Bessel-Gaussian beam propagating in turbulent atmosphere[J]. LASER TECHNOLOGY, 2018, 42(3): 427-432. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.026
Citation: BAO Xunwang, YUAN Yangsheng, CUI Zhifeng, QU Jun. M2 factor of disturbed Bessel-Gaussian beam propagating in turbulent atmosphere[J]. LASER TECHNOLOGY, 2018, 42(3): 427-432. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.026

受遮挡贝塞尔-高斯光束在湍流大气传输的M2因子

基金项目: 

国家自然科学基金资助项目 11404007

国家自然科学基金资助项目 11374015

详细信息
    作者简介:

    包训旺(1992-), 男, 硕士研究生, 主要从事激光大气传输与光束质量的研究

    通讯作者:

    屈军, E-mail:qujun70@mail.ahnu.edu.cn

  • 中图分类号: TN012

M2 factor of disturbed Bessel-Gaussian beam propagating in turbulent atmosphere

  • 摘要: 为了研究受遮挡贝塞尔-高斯光束在湍流大气中传输时质量因子的特性,基于拓展的惠更斯-菲涅耳原理和维格纳分布函数的二阶矩定义,经理论推导得出受遮挡贝塞尔-高斯光束的解析表达式,并进行了相应的数值计算。结果表明,当遮挡物尺寸不大于0.4倍的腰宽时,受遮挡贝塞尔-高斯光束在湍流大气中的传输质量因子随传播距离、湍流大气结构常数的增大而增大,随着湍流内标量、光束拓扑荷数的增大而减小。在相同条件下,光束的传输质量因子随着遮挡物尺寸的增大而增大。所得结论对实际激光传输和自由空间光通信有一定的参考价值。
    Abstract: In order to study the propagation properties of the disturbed Bessel-Gaussian beam in turbulent atmosphere, based on the extended Huygens-Fresnel principle and the second-order moments of the Wigner distribution function, the formulas of M2 factor for the disturbed Bessel-Gaussian beam were derived by theoretical calculation analysis, and the corresponding numerical calculation was carried out. The results show that, when the size of obstruction is not more than 0.4 times of beam width, the propagation factor of Bessel-Gaussian beam in turbulent atmosphere would increase with the increasing of the propagation distance and atmospheric structure constant, and decrease with the increasing of the inner scale of turbulence and topological charge indexes. Under the same condition, the propagation factor of Bessel-Gaussian beam in turbulent atmosphere increases with the increase of the size of obstruction. These results have certain reference value in free space optical communication and actual laser transmission.
  • Figure  1.   The normalized M2 factor of Bessel-Gaussian beam with different topological charges and obstacle parameters

    Figure  2.   The normalized M2 factor of Bessel-Gaussian beam with different waist widths and obstacle parameters

    Figure  3.   The normalized M2 factor of Bessel-Gaussian beam with different inner scales and obstacle parameters

    Figure  4.   The normalized M2factor of Bessel-Gaussian beam with different structure constants and obstacle parameters

  • [1]

    NIU H H, HAN Y P. Performance analysis of Bessel-Gaussian vortex beam propagation in atmospheric turbulence[J]. Laser Technology, 2017, 41(3):451-455(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201703029

    [2]

    ZHU Y, CHEN M Y, ZHANG Y X, et al. Propagation of the OAM mode carried by partially coherent modified Bessel-Gaussian beams in an anisotropic non-Kolmogorov marine atmosphere[J]. Journal of the Optical Society of America, 2016, A33(12):2277-2283. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b29271d285c2b5b4680b3dc5a77e5863

    [3]

    ZHU K C, LI S X, TANG Y, et al. Study on the propagation parameters of Bessel-Gaussian beams carrying Optical vortices through atmospheric turbulence[J]. Journal of the Optical Society of America, 2012, A29(3):251-257. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c2aeb07dd7fb487fc7fd7b179214da43

    [4]

    NELSON W, PALASTRO J P, DAVIS C C. Propagation of Bessel and Airy beams through atmospheric turbulence[J]. Journal of the Optical Society of America, 2014, A 31(3):603-609. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1312.0620

    [5]

    WANG X Y, YAO M W, QIU Z L, et al. Evolution properties of Bessel-Gaussian Schell-model beams in non-Kolmogorov turbulence[J]. Optics Express, 2015, 23(10):12508-12523. DOI: 10.1364/OE.23.012508

    [6]

    XU K T, YUAN Y H, FENG X, et al. Propagation properties of partially coherent flat-topped beam array in oceanic turbulence[J]. Laser Technology, 2015, 39(6):877-884(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201506031.htm

    [7]

    WU Y Q, ZHANG Y X, LI Y. Beam wander of Gaussian-Schell model beams propagating through oceanic turbulence[J]. Optics Communications, 2016, 371:59-66. DOI: 10.1016/j.optcom.2016.03.041

    [8]

    DAN Y Q, ZHANG B. Second moments of partially coherent beams in atmospheric turbulence[J].Optics Letters, 2009, 34(5):563-565. DOI: 10.1364/OL.34.000563

    [9]

    ZHAO Q, ZHONG M, LÜ B D. Experimental study about laser beam wander in atmosphere[J]. Laser Technology, 2010, 34(4):532-534(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201004025

    [10]

    DAN Y Q, ZHANG B. Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere[J]. Optics Express, 2008, 16(20):15563-15575. DOI: 10.1364/OE.16.015563

    [11]

    BIRCH P, ITUEN I. Long-distance Bessel beam propagation through Kolmogorov turbulence[J]. Journal of the Optical Society of America, 2015, A32(11):2066-2073. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b28013d28655d763e8fad9dab0480bc2

    [12]

    YANG G C, HAN S C, LIU X C, et al. Scintillation and dancing of laser beam propagation in marine atmosphere[J]. Laser Technology, 1991, 15(2):104-107(in Chinese). http://cn.bing.com/academic/profile?id=ef8896ff888c8551eab170594a551ba6&encoded=0&v=paper_preview&mkt=zh-cn

    [13]

    WU J. Propagation of a Gaussian-Schell beam through turbulent media[J]. Journal of Modern Optics, 1990, 37(4):671-684. DOI: 10.1080/09500349014550751

    [14]

    CHENG W, HAUS J W, ZHAN Q W. Propagation of vector vortex beams through a turbulent atmosphere[J]. Optics Express, 2009, 17(20):17829-17836. DOI: 10.1364/OE.17.017829

    [15]

    DURNIN J, MICELI J, EBERLY J. Diffraction-free beams[J]. Physical Review Letters, 1987, 58(15):1499-1501. DOI: 10.1103/PhysRevLett.58.1499

    [16]

    QIAO C H, FENG X X, CHU X X. Propagation and self-healing ability of a Bessel-Gaussian beam modulated by Bessel gratings[J]. Optics Communications, 2016, 365:24-28. DOI: 10.1016/j.optcom.2015.11.079

    [17]

    CHU X X, WEN W. Quantitative description of the self-healing ability of a beam[J]. Optics Express, 2014, 22(6):6899-6904. DOI: 10.1364/OE.22.006899

    [18]

    CHENG M J, GUO L X, LI J T. Propagation properties of an optical vortex carried by a Bessel-Gaussian beam in anisotropic turbulence[J]. Journal of the Optical Society of America, 2016, A33(8):1442-1450. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=092af694730df07b21e3d616a69f4252

    [19]

    LI S H, WANG J. Adaptive free-space optical communications through turbulence using self-healing Bessel beams[J]. Scientific Reports, 2017(7):43233. http://pubmedcentralcanada.ca/pmcc/articles/PMC5322389/

    [20]

    YUAN Y S, LEI T, LI Z H, et al. Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams[J]. Scientific Reports, 2017(7):42276. http://www.nature.com/articles/srep42276

    [21]

    SERNA J, MARTÍNEZ-HERRERO R, MEJÍAS P M. Parametric characterization of general partially coherent beams propagating through ABCD optical systems[J]. Journal of the Optical Society of America, 1991, A8(8):1094-1098. DOI: 10.1364-JOSAA.8.001094/

图(4)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-27
  • 修回日期:  2017-08-31
  • 发布日期:  2018-05-24

目录

    /

    返回文章
    返回