高级检索

光电跟踪系统非均匀受力摩擦补偿研究

Research on friction compensation of non-uniform force in photoelectric tracking system

  • 摘要: 为了解决光电跟踪系统中摩擦扰动问题、进一步提高视轴稳定精度, 采用了LuGre模型和终端滑模观测器(TSMO)融合的补偿方法(LuGre-TSMO), 即在LuGre模型的基础上设计一种基于新型趋近率的终端滑模观测器实现对系统摩擦的2次补偿。结果表明, 相比于未补偿情况, LuGre-TSMO方法的速度跟踪均方根误差平均下降了65. 38%, 有效提高了实验平台视轴稳定精度; 相比于LuGre模型方法和终端滑模观测器方法, LuGre-TSM0方法摩擦补偿效果最好。该方法在光电跟踪系统中是可行且有效的。

     

    Abstract: To mitigate the issue of friction disturbance in the photoelectric tracking system and to improve the stability and precision of the line of sight, a compensation technique known as LuGre-TSMO was employed. The LuGre model was combined with a terminal sliding mode observer (TSMO) in this approach. Specifically, a terminal sliding mode observer was devised based on a novel reaching rate, utilizing the LuGre model as a basis. This design enables the system to achieve secondary compensation for friction. In comparison to the scenario without compensation, the root mean square error of speed tracking was reduced by in average of 65. 38%. Consequently, the accuracy of visual axis stability on the experimental platform was effectively enhanced. The simulation and experimental outcomes demonstrate that the LuGre-TSMO method exhibits the most effective friction compensation effect when compared to the LuGre model method and the terminal sliding mode observer method. Furthermore, it is demonstrated to be both feasible and ffective in the context of the photoelectric tracking system.

     

/

返回文章
返回