[1] 乔琦, 钟铭亮, 任维, 等. 具有输入饱和的光电伺服平台的滑模控制[J]. 激光技术, 2020, 44(4): 429-435. doi: 10.7510/jgjs.issn.1001-3806.2020.04.006QIAO Q, ZHONG M L, REN W, et al. Sliding mode control of photoelectric servo platforms with input saturation[J]. LaserTechnology, 2020, 44(4): 429-435(in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2020.04.006
[2] 张良总, 杨涛, 吴云, 等. 基于图像测量的Stewart平台双阶控制技术[J]. 光电工程, 2022, 49(8): 220019.ZHANG L Z, YANG T, WU Y, et al. Two-stage control technology of Stewart platform based on image measurement[J]. Opto-Electronic Engineering, 2022, 49(8): 220019(in Chinese).
[3] 夏文强, 何秋农, 段倩文, 等. 基于传感器优化与鲁棒预测的等效加速度前馈[J]. 光电工程, 2021, 48(11): 210153.XIA W Q, HE Q N, DUAN Q W, et al. Equivalent acceleration feedforward based on sensor optimization and robust prediction[J]. Opto-Electronic Engineering, 2021, 48(11): 210153(in Chinese).
[4] 唐涛, 马佳光, 陈洪斌, 等. 光电跟踪系统中精密控制技术研究进展[J]. 光电工程, 2020, 47(10): 200315.TANG T, MA J G, CHEN H B, et al. Research progress of precision control technology in p-hotoelectric tracking system[J]. Opto-Electronic Engineering, 2020, 47(10): 200315(in Chinese).
[5] 李贤涛, 张葆, 沈宏海. 基于自抗扰控制技术提高航空光电稳定平台的扰动隔离度[J]. 光学精密工程, 2014, 22(8): 2223-2231.LI X T, ZHANG B, SHEN H H. The disturbance isolation degree of the aircraft optoelectro-nic stabilization platform is improved based on the active disturbance rejection control tech-nology[J]. Optics and Precision Engineering, 2014, 22(8): 2223-2231(in Chinese).
[6] 李志俊, 毛耀, 亓波, 等. 量子光通信中位置修正单检测控制方法[J]. 光电工程, 2022, 49(3): 210311.LI Zh J, MAO Y, QI B, et al. Position correction single detection control method in quantum optical communication[J]. Opto-Electronic Engineering, 2022, 49(3): 210311(in Chinese).
[7] LI Z Q, ZHOU Q K, ZHANG Z Y, et al. Prestiction friction compensation in direct-drive mechatronics systems[J]. Journal of Central South University, 2013, 20(11): 3031-3041. doi: 10.1007/s11771-013-1826-y
[8] 王玉, 边启慧, 廖军, 等. 惯性稳定万向架中基于SBG惯导的捷联控制技术[J]. 光电工程, 2023, 50(5): 22023.WANG Y, BIAN Q H, LIAN J, et al. Strapdown control technology based on SBG inertial navigation in inertial stabilized gimbal[J]. Opto-Electronic Engineering, 2023, 50(5): 22023(in Chinese).
[9] 任彦, 刘正华, 周锐. 滑模干扰观测器在低速光电跟踪系统中的应用[J]. 北京航空航天大学学报, 2013, 39(6): 835-840.REN Y, LIU Zh H, ZHOU R. Application of sliding mode interference observer in low speed photoelectric tracking system[J]. Journal of Beihang University, 2013, 39(6): 835-840(in Chinese).
[10] 王正玺, 张葆, 李贤涛, 等. 航空光电稳定平台高性能摩擦力补偿方案[J]. 航空学报, 2017, 38(12): 277-284.WANG Zh X, ZHANG B, LI X T, et al. High performance friction compensation scheme for aircraft optoelectronic stabilization platform[J]. Actaaeronautica, 2017, 38(12): 277-284(in Chinese).
[11] 张嘉峰. 机械伺服系统非线性摩擦补偿自适应控制[D]. 西安: 西安电子科技大学, 2021: 3-7.ZHANG J F. Adaptive control of nonlinear friction compensation for mechanical servo syste-m[D]. Xi'an: Xidian University, 2021: 3-7(in Chinese).
[12] 牛建军, 付永领, 刘和松. 高精确度飞行仿真转台内框控制摩擦补偿研究[J]. 电机与控制学报, 2008, 12(5): 576-579.NIU J J, FU Y L, LIU H S. Research on friction compensation of inner frame control of high precision flight simulation turntable[J]. Journal of Electric Machines and Control, 2008, 12(5): 576-579(in Chinese).
[13] 张丹. 含摩擦环节伺服系统的补偿控制[D]. 西安: 西安电子科技大学, 2008: 17-26.ZHANG D. Compensation control of servo system with friction link[D]. Xi'an: Xidian University, 2008: 17-26(in Chinese).
[14] YUE F, LI X. Robust adaptive integral backstepping control for opto-electronic tracking system based on modified lugre friction model[J]. ISA Transactions, 2018, 80: 312-321. doi: 10.1016/j.isatra.2018.07.016
[15] FRIEDLAND B, PARK Y J. On adaptive friction compensation[J]. IEEE Transactions on Automatic Control, 1992, 37(10): 1609-1612. doi: 10.1109/9.256395
[16] ARMSTRONGHELOUVRY B, DUPONT P, DEWIT C. A survey of models, analysis tools and compensation methods for the control of machines with friction[J]. Automatica, 1994, 30(7): 1083-1138. doi: 10.1016/0005-1098(94)90209-7
[17] POSA M, TOBENKIN M, TEDRAKE R. Stability analysis and control of rigid-body systems with impacts and friction[J]. IEEE Transactions On Automatic Control, 2016, 61(6): 1423-1437. doi: 10.1109/TAC.2015.2459151
[18] 赵威, 任雪梅. 含摩擦的双电机伺服系统快速终端滑模控制[J]. 哈尔滨工业大学学报, 2014, 46(3): 119-123.ZHAO W, REN X M. Fast terminal sliding mode control of dual motor servo system with friction[J]. Journal of Harbin Institute of Technology, 2014, 46(3): 119-123(in Chinese).
[19] 陈晓刚, 蔡猛, 戴宁. 基于DOB观测器的机载光电稳定平台扰动抑制方法[J]. 电光与控制, 2020, 27(1): 98-101.CHEN X G, CAI M, DAI N. Disturbance suppression method of airborne optoelectronic sta-ble platform based on DOB observer[J]. Electric Light and Control, 2020, 27(1): 98-101(in Chinese).
[20] 于洋, 张红刚, 高军科, 等. 光电平台角位置信息摩擦观测补偿技术[J]. 红外与激光工程, 2022, 51(5): 20210557.YU Y, ZHANG H G, GAO J K, et al. Friction observation compensation technology for opti-cal level station angle and position information[J]. Infrared and Laser Engineering, 2022, 51(5): 20210557(in Chinese).
[21] DENG Y, WANG J, LI H, et al. Adaptive sliding mode current control with sliding modedisturbance observer for pmsm drives[J]. ISA Transactions, 2019, 88: 113-126. doi: 10.1016/j.isatra.2018.11.039
[22] 董丽荣, 任彦, 王义敏. FTASMC在光电跟踪系统中的应用[J]. 中国测试, 2023, 49(10): 71-76.DONG L R, REN Y, WANG Y M. Application of FTASMC in photoelectric tracking system[J]. China Measurement & Test, 2023, 49(10): 71-76(in Chinese).
[23] YU X, KAYNAK O. Sliding-mode control with soft computing: A survey[J]. IEEE Transactions on Industrial Electronics, 2009, 56(9): 3275-3285. doi: 10.1109/TIE.2009.2027531
[24] ZHANG X. Robust integral sliding mode control strategy under designed switching rules for uncertain switched linear systems via multiple lyapunov functions[J]. Transactions of the Institute of Measurement and Control, 2019, 41(12): 3536-3549. doi: 10.1177/0142331219832947
[25] XU Y, WU A, ZHU Q, et al. Observer-based sliding mode control for flexible spacecraft with external disturbance[J]. IEEE Access, 2020, 8: 32477-32484. doi: 10.1109/ACCESS.2020.2973657
[26] ZHANG B, NIE K, CHEN X, et al. Development of sliding mode controller based on inter-nal model controller for higher precision electro-optical tracking system[J]. Actuators, 2022, 11(1): 16. doi: 10.3390/act11010016
[27] GONG C, HU Y, GAO J, et al. An improved delay-suppressed sliding-mode observer for sen-sorless vector-controlled pmsm[J]. IEEE Transactions on Industrial Electronics, 2020, 67(7): 5913-5923. doi: 10.1109/TIE.2019.2952824
[28] JIANG J, ZHOU X, ZHAO W, et al. A fast integral sliding mode controller with an extended state observer for position control of permanent magnet synchronous motor servo systems[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(8): 1239-1250.
[29] 周倩, 张兵, 李志俊, 等. 光电跟踪系统的区间2型模糊滑模控制方法[J]. 激光技术, 2023, 47(3): 293-300. doi: 10.7510/jgjs.issn.1001-3806.2023.03.001ZHOU Q, ZHANG B, LI Zh J, et al. Interval type-2 fuzzy sliding mode control method of electro-optical tracking system[J]. Laser Technology, 2023, 47(3): 293-300(in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2023.03.001
[30] WANG Y, CAO L, ZHANG Sh, et al. Command filtered adaptive fuzzy backstepping control method of uncertain non-linear systems[J]. IET Control Theory & Applications, 2016, 10(10): 1134-1141.
[31] 薛进学, 郭清远, 张丰收. 基于LuGre摩擦模型前馈补偿的模糊PID控制系统设计[J]. 现代制造工程, 2020(1): 136-142.XUE J X, GUO Q Y, ZHANG F Sh. Design of fuzzy PID control system based on feedforward compensationof the LuGre friction model[J]. Modern Manufacturing Engineering, 2020(1): 136-142(in Chinese).
[32] 张文轩, 王栋. 两轴两框架机载光电系统摩擦模型辨识的研究[J]. 光学与光电技术, 2023, 21(2): 144-151.ZHANG W X, WANG D. Research on friction model identification of two-axis two-frame airborne photoelectric system[J]. Optics and Photoelectric Technology, 2023, 21(2): 144-151(in Chinese).
[33] 李明, 封航, 李莹月. 基于改进遗传算法的LuGre摩擦模型参数辨识及补偿[J]. 组合机床与自动化加工技术, 2018(11): 38-42.LI M, FENG H, LI Y Y. Parameter identification and compensation of LuGre friction model based on improved genetic algorithm[J]. Combined Machine Tools and Automated Processing Technology, 2018(11): 38-42(in Chinese).
[34] de WIT C C, OLSSON H, ASTROM K J, et al. A new model for control of systems with friction[J]. IEEE Transactions on Automatic Control, 1995, 40(3): 419-425. doi: 10.1109/9.376053
[35] XUE T, LI R, TOKGO M, et al. Trajectory planning for autonomous mobile robot using a hybrid improved qpso algorithm[J]. Soft Computing, 2017, 21(9): 2421-2437. doi: 10.1007/s00500-015-1956-2
[36] 王元超. 机载三轴通用光电稳定平台自适应滑模控制方法研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2021: 37-44.WANG Y Ch. Research on adaptive sliding mode control methods for an airborne three-axis universal electro-optical stabilized platform[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2021: 37-44(in Chinese).